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PREFACE 

This volume contains the full-length papers presented in the 15th International Conference on Evolutionary 

and Deterministic Methods for Design, Optimization and Control (EUROGEN 2023) that was held on June 1-3, 

2023 in Chania, Crete, Greece.  

EUROGEN 2023 is the 15th of a series of International Conferences previously held in Las Palmas de Gran 

Canaria (1995), Trieste (1997), Jyväskylä (1999), Athens (2001), Barcelona (2003), Munich (2005), Jyväskylä 

(2007), Kracow (2009), Capua (2011), Las Palmas de Gran Canaria (2013), Glasgow (2015), Madrid (2017), 

Guimaraes (2019), and with online format in (2021), devoted to Evolutionary and Deterministic Design, 

Optimization and Control Methods for Industrial Applications. 

EUROGEN aims at bringing together specialists from Universities, Research Institutions and Industry developing 

or applying Evolutionary and Deterministic Methods in design optimization and with emphasis on industrial and 

societal applications. 

This series of conferences was originally launched by the European Thematic Network INGENET and has 

become an ECCOMAS Thematic Conference since 2007 in association with ERCOFTAC. 

The EUROGEN 2023 Conference is supported by the National Technical University of Athens (NTUA and the 

Greek Association for Computational Mechanics (GRACM). 

The editors of this volume would like to thank all authors for their contributions. Special thanks go to the 

colleagues who contributed to the organization of the Minisymposia and to the reviewers who, with their work, 

contributed to the scientific quality of publications in this e-book. 
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Abstract 

In recent years, machine learning tools have demonstrated their potential for accurate 

predictions. In the field of naval hydrodynamics, Computational Fluid Dynamics (CFD) tools 

are widely used to calculate ship resistance during the design stage. These tools are time-costly 

and require powerful computational resources. The estimation of ship resistance is a key factor 

for the operation of a vessel, and it should be obtained in early stages of design. Nowadays, 

numerical tools allow the study of different hull parameters before building the full-scale ship 

or an experimental model, saving time and money. Potential-flow-based tools give a relatively 

fast prediction when waves are dominating. However, potential solvers do not give accurate 

predictions when friction forces are significant. Viscous solvers are more suitable for this case, 

although they require much higher calculation time. The hull design of a bulbous bow vessel 

demands testing different bulb configurations to minimize ship resistance. This can be 

accomplished with viscous solvers, which are highly costly in computational resources due to 

the big number of models to be tested. This work proposes the creation of a surrogate model 

using Artificial Neural Networks (ANN) for the prediction of the ship resistance for different 

configurations of the bulb. The ANN is trained using a large database of different bulb 

configurations, and their corresponding computed ship resistance obtained with a CFD solver. 

Results show that the surrogate model can predict the ship resistance to high degree of 

accuracy and significantly faster than performing the corresponding CFD simulation. 

 

Keywords: Bulbous bow, ship resistance, surrogate model, Artificial Neural Network (ANN), 

Machine Learning, CFD. 
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1 INTRODUCTION 

The estimation of the power consumption of a vessel is a key factor that will determine the 

size of a ship engine, thus fuel consumption, gas emissions and operating costs. Traditionally, 

towing tank tests have been performed to estimate the ship resistance of scaled models of 

vessels, that were extrapolated to full scale with several methods. These tests were expensive 

and time consuming, which led to the creation of some prediction models of ship resistance 

based on statistical data for different ship types, such as Holtrop and Mennen’s [1], van 

Oortmerssen’s methods [2], among others. These models, usually developed on behalf of 

towing tank facilities, allowed a relatively accurate prediction of ship resistance for some ship 

types within a range of ship variables. 

The development in technology allowed great advances in numerical methods, and 

computational fluid dynamics (CFD) prompted in the field of marine hydrodynamics. The use 

of CFD meant that a design could be numerically tested without the need of performing 

expensive experimental tests, as well as providing the possibility of making design variations 

on the model since traditional tests require to build different models for such a purpose, 

increasing experimental costs ([3]–[5]). Increasing computing capabilities have made CFD 

analysis an attractive alternative to estimate resistance prediction, especially for optimization 

purposes, reducing analysis time from days to several hours. Although numerical solutions are 

mostly used nowadays, traditional experimental tests have not been totally replaced, since there 

is still a need for validation of these numerical tests, as many authors show in their works ([6]–

[9]).  

Numerical tools require the creation of a virtual hull, that will be used to create the 

calculation mesh for the CFD solver. This virtual hull, usually created with Computer Aided 

Design (CAD) software with solid bodies or surfaces, provides the option of easily 

parametrizing the hull model. This is highly advantageous when performing multiple studies 

for optimization purposes. Different tools and methods are found in the literature to create 

variations of the model parameters; Free From Deformation (FFD) and Bezier curves being 

among the most popular methods ([10]–[14]). FFD is used in this work to parametrize the CAD 

model. 

Although CFD analysis provide many options in ship design, they have a clear disadvantage 

when a huge number of analyses is required: they are very time consuming. For this reason, 

several authors have tried to develop faster prediction methods such as surrogate models, which 

are based on different approaches [14]. Recent developments in Machine Learning (ML) 

techniques have attracted researchers’ attention to obtain surrogate models that accurately infer 

the desired results in shorter time. In the field of marine engineering, ML tools are being used 

to design vessels and estimate their hydrodynamic resistance and fuel consumption ([15]–[18]), 

as well as added resistance and seakeeping behavior. Among these ML techniques, Artificial 

Neural Network (ANN) is the most used, showing promising results ([19]–[22]).  

This paper presents a method to obtain a surrogate model based on ANN for the fast 

prediction hydrodynamic ship resistance of a vessel with different bulb shapes. The advantage 

of this method, compared with traditional numerical simulations, resides in a reduced 

calculation time from hours to seconds. Next section of this work shows the methodology to 

obtain training data with a parametric numerical model. Section 3 shows the implementation of 

the ANN, and section 4 comprehends results and conclusions.  
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2 NUMERICAL SET-UP 

2.1 Parametric Modelling 

The bulbous bow of a ship has complex surfaces with curvature in several directions that are 

usually difficult to model. These surfaces must be smooth enough to avoid hydrodynamic 

interferences that could lead to increased ship resistance. KRISO containership (KCS), a well-

studied ship model with an existing bulbous bow, has been selected as a case for this study. The 

main features of the vessel are shown in Table 1, and the definition of the bulb parameters is 

shown in Figure 1. 

To carry out a reasonable number of simulations with different bulb shapes, the bulb has 

been parametrized by using Free Form Deformation (FFD). This technique allows local 

deformation of a part of the hull, restricted to the desired surfaces or influence area to be 

changed. Deformation is achieved by moving 3 control points affecting the bulb shape, which 

define the bulb length, beam, and depth (Figure 2). The points named length and stem can move 

in the length direction in a specified range, the movement of the width points being dependent 

of the former. Only stem point moves in depth direction, over the line that the stem of the ship 

would have if no bulb was placed. Width points are moved in beam direction according to a 

specified range.  

Parameter  Value 

Length (L)  7.7 m 

Length between particulars (Lpp)  7.28 m 

Beam (B)  1.02 m 

Draft (D) 0.342 m 

Bulb length (Lb) 0.248 m  

Bulb beam (Bb) 0.152 m 

Bulb depth (Db) 0.304 m 

Froude number (Fn) 0.2599 

Table 1: Main features of the KCS model. 

 

Figure 1: Definition of bulb parameters. 
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Figure 2: Position of the control points and area of the hull affected by FFD. Red arrows show the direction of 

the movement of each point in relation with the axis of the ship (right). 

2.2 Computational domain 

Hydrodynamic ship resistance has been calculated with the software STARCCM+. The scale 

factor of the model is 36. The domain mesh, shown in Figure 3, contains nearly a million cells, 

varying with the dimensions of the different ships. The Volume of Fluid Method, Reynolds-

averaged Navier-Stokes (RANS), and turbulence model k-ω are the main solvers and methods 

used for the equations of fluid dynamics. Dynamic fluid body interaction (DFBI) is also used, 

allowing heave and pitch for the ship model to obtain more accurate results. Damping is used 

in the walls to avoid wave reflections. 

ITTC [23] recommendations for hydrodynamic simulations with Computational Fluid 

Dynamics (CFD) have been followed for the numerical set up. The domain size has dimensions 

that set 1.5 Lpp in the tank inlet in front of the ship, 3 Lpp in the tank outlet behind the ship, 2.5 

Lpp to the sides and below the hull and 1 Lpp in the vertical direction above the hull. Symmetry 

has been used to reduce calculation time, which varied from 6 h to more than 30 h for a time 

step of 0.4 s, depending on the features of the vessel. Mesh refinements are applied to the 

surfaces of the hull and nearby areas, specially at the bow region and the bulb, as well as in the 

free surface to properly capture generated waves.  

 

  

Length 

Fixed 

Stem 

Width 

Length 

Depth 

Breadth Beam 

4



Samuel Ruiz-Capel, Aase Reyes, and Dimitrios Kraniotis 

 

Figure 3: Domain mesh for the calculation of hydrodynamic ship resistance. 

3 SURROGATE MODEL BASED ON ANN 

Artificial Neural Networks (ANN) have been used to obtain a surrogate model that infers 

hull hydrodynamic resistance based on the bulb parameters (see Figure 4). Multi-Layer 

Perceptron (MLP) has been selected for the architecture of the ANN. To generate, and to train 

the ANNs, the GPU-Tensorflow library has been used. GPU capabilities provide faster results 

than those obtained with traditional CPU ([24]–[26]). 

For this study, the configuration adopted for the ANN is based on common configurations 

existing in the literature [24]. Different neural networks have been tested, varying 3 layers of 

10, 20 and 30 neurons, including Adam and RMSprop optimizers, activation functions (ReLU, 

Sigmoid), different number of epochs (50-200) and seeding.  

The input values are the parameters of the bulb defined in Section 2 (see Figure 2). The 

output value is the hydrodynamic ship resistance. Simulations performed with the numerical 

solver provide the points that conform the data set. The more points provided to the network, 

the better the prediction will be. However, the problem studied here requires several hours of 

calculation time per simulation, making it unfeasible to have a large data set. 

Mean absolute error (MAE) has been used to assess the neural networks, the most suitable 

ANN being that with the lowest MAE. This error is calculated from equation (1), where 𝑡𝑖 is 

the value from the numerical simulation and 𝑝𝑖 is the ANN predicted value. 

𝑀𝐴𝐸 =
∑ |𝑡𝑖 − 𝑝𝑖|
𝑛
𝑖=1

𝑛
 (1) 
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Figure 4: Graphical representation of an Artificial Neural Network (ANN). 

4 RESULTS AND CONCLUSIONS 

A total number of 40 vessels with different bulb shape has been numerically tested. The 

resistance to motion of the original KRISO containership has been initially calculated and 

compared with benchmark experimental data [27]. Table 2 shows the comparison between both 

results, with an error that is below 2 %. Thus, the numerical set up is validated to perform other 

simulations with similar features. In addition, wave patterns of the resistance simulation, shown 

in Figure 5, present a reasonable distribution over the free surface. 

Experiment (N) Simulation (N) Difference (%) 

85.269 83.711 1.82 

Table 2: Validation of the numerical software with experimental results. 

 

Figure 5: Wave pattern of the KCS hull in the numerical simulation. 
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The results from the neural network showed that the best ANN configuration has 3 layers of 

30 neurons each, ReLU activation function, RMSprop optimizer and 200 epochs. 

Figure 6 compares the results obtained through the numerical simulations, which are used to 

train the ANN, with those predicted with the ANN. The deviation of the ANN predicted results 

provide an average error of 8 %, varying for the different designs. As shown in the figure, the 

network usually predicts with better accuracy values below 100 N. This is reasonable 

considering the relatively low number of input data used to train the ANN, which was mainly 

concentrated in the range of 80-100 N.  

The trained Artificial Neural Network provides relatively accurate results if compared with 

the numerical simulations, with the advantage of reducing the calculation time from several 

hours to less than a second. The use of ANN for the estimation of ship resistance with different 

bulb shapes has shown to be effective and will be further developed.  

As shown in Figure 7, the error decreases with the number of iterations. It is expected to 

obtain even lower errors with a larger dataset, and that will be assessed in future work. 

 

Figure 6: Comparison between results from numerical simulations and ANN predictions. 

 

Figure 7: Error decrease for training and validation results over epochs. 
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Abstract 

Knots in wooden structures are common natural features in wood that result from where 

branches once joined the trunk of a tree. While they can add to the aesthetic appeal of wood, 

knots are often considered structural defects in construction because they can significantly af-

fect the mechanical properties of wood. If knots are present in structural members, they cannot 

be ignored. Identifying the presence of knots and finding the corresponding defected area of a 

structural member is important to be able to reinforce the member, compensate for the reduced 

strength and ensure that it is safe and suitable for its intended use. In this study, the Inception-

ResNet-V2 pre-trained Convolutional Neural Network (CNN) model is trained and validated 

with 2000 images for the classification of knots, and the defected area is calculated through 

Image Processing (IP) and other soft computing techniques. The images of knots are collected 

and equally classified into two categories: 1000 “Single knot” and 1000 “Multiple knots” im-

ages. 70% of the dataset is used for training, and 30% for model validation. Four statistical 

parameters, namely accuracy, precision, recall, and F1 score, are calculated to check the 

model performance for the classification task, as well as the corresponding confusion matrix. 

The model exhibited an overall accuracy of 84% in an independent evaluation with a new test-

ing dataset of 200 images, while the defects could be properly quantified using IP techniques. 

The research work shows the potential of AI-based methodologies in structural health monitor-

ing and damage identification. These methods can drastically improve our ability to assess the 

condition of structures and structural elements, offering enhanced precision and accuracy, 

real-time and cost-effective monitoring, predictive capabilities, and automation opportunities. 

 

Keywords: Classification, Knots, Wood, Timber, Defected area, Image processing, CNN. 
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1 INTRODUCTION 

Wood has been an essential construction material throughout human history, with its use 

dating back to prehistoric times when early humans began creating tools and shelter. During 

the Neolithic period, timber framing became prevalent, a method still popular today. Ancient 

civilizations, like the Egyptians and Romans, also made extensive use of wood in construction. 

In more recent history, the industrial revolution saw the creation of new wood products like 

plywood and oriented strand board, expanding the versatility of wood in construction. Today, 

despite the emergence of alternative materials like steel and concrete, wood continues to be a 

fundamental material in construction due to its strength, flexibility, and sustainability. 

Over time, wooden structures can face several issues due to various factors. One of the pri-

mary threats to wood is biological damage, which includes infestations from insects such as 

termites and beetles, as well as fungal growth that can cause wood rot. These biological agents 

can significantly weaken the structural integrity of the wood, leading to potential failure of the 

structure. Another issue with wood is that it is susceptible to environmental damage. Excessive 

moisture can lead to swelling and warping of the wood, and if not properly dried, it can also 

promote rot and mold growth. On the other hand, extremely dry conditions can cause the wood 

to crack and split. Other threats include fire damage, exposure to sunlight, chemical damage, 

and others. Therefore, while wood is a versatile and sustainable construction material, it re-

quires regular maintenance and protective treatments to ensure its longevity. 

Construction frequently uses wooden structures, especially for homes and small businesses. 

Wooden elements can serve a variety of functions, such as load-bearing walls, floor and ceiling 

framework, and support for cladding materials like masonry or siding [1]. Different factors, 

such as fluctuations in humidity and temperature, mechanical stress, and bug infestation, can 

result in cracks and knots in timber buildings. Depending on how old the timber is, it may 

develop cracks naturally or because of poor fitting or upkeep. 

When a tree’s stem produces branches or limbs, those branches or limbs are eventually cut 

off, leaving a knot in the timber. Thus, knots are common natural features in wood that result 

from where branches once joined the trunk of a tree. While they can add to the aesthetic appeal 

of wood, particularly in decorative applications, knots are often considered structural defects in 

construction because they can significantly affect the mechanical properties of wood. They can 

lead to deviations in the woody tissue, cause trouble in processing, a decrease in the workpiece’s 

mechanical strength, and inferior wood quality [2]. 

Such knots may result in cracks forming and impair the wood’s structural stability as illus-

trated in Figure 1. It is critical to use wood that has been properly seasoned and treated to pre-

vent fractures and knots from compromising the structural integrity. The structure should also 

be routinely maintained. Typically, structural components should be free of knots, whenever 

feasible. When designing the framework, it is crucial to take knots into account, as well as their 

type and location. For instance, since the internal forces on a beam are usually highest near the 

middle of the span, knots closer to the ends of a beam are typically less problematic than knots 

closer to the high-stress middle areas. It might be necessary to use a larger size of wood or to 

strengthen the member in some other way to make up for the knot’s decreased strength if it is 
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in a crucial structural member and cannot be avoided. One should always seek the advice of a 

building engineer or other expert [3] in such cases. 

 

 
Figure 1: Knots in a wooden element. 

 

The manual visual inspection of wooden structures can be challenging because many of the 

signs of decay or damage may not be immediately visible. For example, decay or damage may 

be hidden behind paint or other finishes, making it difficult to detect, while some parts of the 

structure may be difficult to access, such as locations under decks or porches, in crawl spaces 

or attics, or behind wall, and other unreachable areas. So, there is a need to automatically inspect 

the wooden structures to find defects like knots and their extent. In order to identify, pinpoint, 

and quantify harm or deterioration that might compromise the safety or functionality of the 

building, Structural Health Monitoring (SHM), is a procedure that involves tracking a struc-

ture’s health and integrity over time [4], while similarly structural damage identification [5] 

involves assessing a building or other structure for signs of damage that may compromise its 

integrity. These processes are crucial in maintaining the safety and longevity of a structure. 

Artificial intelligence (AI) methods have seen several applications in civil and structural 

engineering [6, 7], in many different areas such as: Structural modelling [8-10], structural de-

sign optimization [11], predictive maintenance [12, 13], SHM [14], risk assessment [15, 16], 

predicting strength [17, 18] and other structural characteristics [19], energy efficiency [20], 

construction planning and management [21], and others. AI methods have also been increas-

ingly utilized in the field of structural engineering for damage detection, offering improved 

accuracy and efficiency compared to traditional methods [22, 23]. 

By utilizing Deep Learning (DL) and Convolutional Neural Networks (CNN), SHM can 

identify early degradation indicators like changes in rigidity, damping, or natural frequencies, 

enabling prompt action to stop additional damage. The evaluation of large-span wood structures 

has gained attention because they are frequently a component of buildings that are assigned to 

higher consequence classifications [24]. As a consequence of recent improvements in non-con-

tact sensing devices, the SHM community has seen a considerable surge in DL-based structural 

system condition assessment approaches. CNNs are commonly employed for classification in 

these DL approaches. CNNs are trained using a large variety of datasets for different types of 

damage and anomaly assessment as well as post-disaster assessment [25]. The classification 

task can be done by CNN, while for computing the characteristics of defects, such as the de-

fected area, other image processing (IP) and soft computing techniques can be employed. In-

formation extraction from digital images is a multidisciplinary area that integrates approaches 

from computer science, mathematics, and engineering [26]. 
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In the present research work, the pre-trained model InceptionResnet-V2 is employed for the 

classification of single and multiple knots and then IP techniques are for the estimation of the 

defected area. The pre-trained model is trained and validated on two classes of knots named (i) 

“single knot”, and (ii) “multiple knots”, with a dataset of 1000 images in each class. The re-

mainder of the manuscript is organized as follows: The literature review is presented in section 

2. Section 3 presents the research methodology, followed by the numerical results and the rel-

evant discussion in section 4. Finally, the conclusions of the work, together with future research 

directions and opportunities are presented in section 5. 

2 LITERATURE REVIEW 

Ehtisham et al. [27] attempted predicting the defects in wooden structures by using pre-

trained CNN models and IP techniques. They collected a dataset of 5000 images of wooden 

elements via site visits and internet sources. 80% of the images showed defects, while the re-

maining 20% represented no defects. Five different classifications were used for the defects, 

namely: (i) Vertical crack; (ii) Horizontal crack; (iii) Diagonal crack; (iv) Knots; and (v) Un-

cracked. The accuracy, precision, recall, and F1 Score of the predictions as well as the impact 

of deep layers on them were examined using the pretrained CNN models ResNet18, ResNet50 

[28], and ResNet101 [29]. Longuetaud et al. [30] developed a method to automatically find and 

quantify knots in computerized tomography (CT) images of softwood beams. The technique, 

which represents a novel method for measuring the knot diameter, is based on the use of 3D 

connex components and a 3D distance transform. The findings are encouraging; depending on 

the beams, detection rates range from 71% to 100%, and no false alarms were detected.  

In [2], it was found that the modulus of elasticity (MOE) and compressive strength (Fc) of 

eucalyptus wood correlate with the size of wood knots. Small, medium, and large knots in 156 

samples of Eucalyptus urophylla were classified into 3 groups, and samples from the same tree 

were chosen for the parallel fiber compression test to determine MOE and Fc. The MOE and 

Fc values of the smaller knot class (Class 1) were significantly different from those of the other 

classes with larger knots (Classes 2 and 3). In [31], a microwave technology is developed for 

producing and processing information on knots in wood prior to actually processing. The ex-

perimental setup consisted of a simple microwave emitter and receiver that was used to scan 

the wood samples for knots. After calibrating and boosting the signals, data storage and graphic 

display were carried out. 

Qayyum et al. [32] attempted detecting cracks with CNN with variable image dataset, using 

the Inception-V3 CNN model, and dividing the dataset into four categories: Vertical crack, 

Horizontal crack, Diagonal crack, and Uncracked. To assess how the quantity of the dataset af-

fects the models’ accuracy, the Inception-V3 model was trained on three train-test splits. The 

findings showed that classification accuracy is improved by training the models with larger 

datasets. Urbonas et al. [33] presented an automated visual inspection method for identifying 

and categorizing irregularities on the wood surface. For identifying flaws in wood veneer sur-

faces, they employed a faster region-based CNN (R-CNN). While faster R-CNN had been uti-

lized effectively in object tracking and medical image processing in the past, it had not yet been 

employed to ensure the quality of wood panel surfaces. Pre-trained CNN models for transfer 

learning, such as AlexNet, VGG16, BNInception, and ResNet152 models were utilized. The 

results demonstrated the applicability of data augmentation and transfer learning techniques for 

the identification of four classes of wood veneer surface defects. 
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3 RESEARCH METHODOLOGY 

3.1 Division of the dataset and methodology steps 

A dataset of 2200 images is used in this study, which is acquired from the literature, in par-

ticular the work of Kodytek et al. [34]. Of these 2200 images, 2000 are equally categorized into 

the two classes: (i) “Single knot”, and (ii) “Multiple knots”, as illustrated in Figure 2, each set 

containing 1000 images. These images are utilized for training (70%) and validating (30%) the 

pre-trained CNN model. The remaining 200 images are also classified and used for testing the 

methodology, after the training has been completed. In the end, for illustration purposes, four 

images, two from each category, are used for testing the classification procedure and for esti-

mating the defected area using image processing techniques. The steps of the methodology and 

are presented in Figure 3. 

 

  
(a) (b) 

Figure 2. The two classes of knots: (a) “Single knot”, (b) “Multiple knots”. 

 

 

Figure 3. The steps of the research methodology. 

3.2 CNN Model and image processing methodology 

For the classification of the dataset, the InceptionResNet-V2 pre-trained CNN model is uti-

lized [35]. InceptionResNet-V2 is a CNN architecture that is widely used for image classifica-

tion tasks in the field of deep learning. The model combines ideas from two earlier CNN 

architectures, Inception and ResNet. Inception, also known as GoogLeNet, was known for its 

“network in network” design, which used modules of parallel convolutions with different kernel 

sizes to allow the model to learn different types of features from the input. However, as the 

Inception model became deeper, it became more difficult to train due to the problem of vanish-

ing gradients. ResNet, or Residual Network, introduced a solution to this problem with the 

concept of “skip connections” or “shortcut connections”, which allow the gradient to be directly 

backpropagated to earlier layers. This innovation made it possible to train much deeper net-

works, with ResNet models commonly having hundreds of layers. 

InceptionResNet-V2 combines these ideas into a single model, using Inception modules for 

effective feature extraction, and ResNet-style skip connections to improve the training of the 
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Results and 
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deep network. The architecture is designed to provide high performance for image classification 

tasks, often achieving top-tier results on benchmarks like ImageNet. As with other DL models, 

InceptionResNet-V2 requires substantial computational resources to train, and its complexity 

means that it can be prone to overfitting, especially when training data is limited. However, pre-

trained models are available that have been trained on large datasets like ImageNet, and these 

can be fine-tuned on a specific task with a smaller amount of data, like in the case of the present 

research work. 

Several linked layers and convolutional blocks, such as convolutions, batch normalization, 

activation, ReLU, pooling, Max pooling, average pooling, completely connected, etc., make up 

the CNN architecture, as illustrated in Figure 4 [36]. InceptionResNet-V2 is a 164-deep layer 

network which has been trained with millions of images which span 1,000 different classes of 

objects, providing a broad and diverse range of data for the models to learn from. The network 

has an image input size of 299-by-299. 

 

Figure 4. The CNN Architecture [37]. 

Digital image processing involves the use of computer algorithms to perform IP on digital 

images, with the aim to enhance their quality or extract valuable information from them. It is a 

subfield of digital signal processing and has a wide array of applications, ranging from com-

puter vision to medical imaging and more. Image enhancing, picture restoration, image com-

pression, image segmentation, and image recognition algorithms are used, among others, in this 

process [38]. In this study, we have used various digital image processing techniques in 

MATLAB for the estimation of the defected area of the knots present in an image, such as the 

commands rgb2gray (which converts RGB image or colormap to grayscale), graythresh (global 

image threshold using Otsu's method), imbinarize (binarize image by thresholding), imfill (fill 

image regions and holes), and others. 

4 NUMERICAL RESULTS 

4.1 Defects classification 

The classification of the defects and the computation of the defected area of the knots are 

evaluated in this study. The knots are classified into two classes: (i) “Single knot”, and (ii) 

“Multiple knots”. The IncepResNet-V2 model is trained and validated on 2000 images and after 

training is completed it is independently tested on another 200 images. The accuracy is 84% for 

single and multiple knots, with a precision of 85% for multiple knots and 84% for single knots, 

recall values of 82% for multiple knots and 86% for single, and F1 score of 84% for both single 

and multiple knots [39]. The detailed results are shown in the confusion matrix of Figure 5. The 

accuracy of predicting multiple knots is slightly less than the accuracy of single knots by using 

this CNN model. The model took 1813 seconds to be trained on 2000 images with a per image 

resolution of 2800 × 1024 × 3 and image size of approximately 8 MB. 
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Figure 5. Confusion matrix for the 200 cases of the testing set images. 

4.2 Defected area computation on selected images 

Four images were randomly selected, two belonging to the single knot class and another two 

belonging to the multiple knots class, for testing the classification and also for calculating the 

defected areas using digital image processing techniques. First, the trained InceptionResNet-

V2 CNN model truly classified all the images in their appropriate classes, i.e. two of them in 

the single knot class and the other two in the multiple knots class, as shown in Figure 6. Then 

the defected area was computed in terms of a percentage of the total image area. In Figure 6, 

the four original images are presented in the first column, on the left. The corresponding pro-

cessed images are presented in the second (middle) column. In these images, the black pixels 

represent the intact (not defected) area, while the white pixels present the defected (knot) area. 

For illustration, the border between the two areas is highlighted with a red line. In the third 

column, on the right, the defected area is calculated as a percentage of the total image area and 

the results are presented for each individual case. 
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Figure 6. Knots classification and defected area computation. 

5 CONCLUSIONS 

Knots can add visual interest to wood structures and increase their aesthetic appeal. On the 

other hand, they can weaken the structural integrity if they are too large, too close together, or 

located in critical areas such as high-stress locations of load-bearing members. This is because 

knots can further create local stress concentrations that can lead to cracking, splitting, or even 

failure of the wood. In addition, knots can also reduce the quality and durability of wood by 

affecting its dimensional stability, moisture content, and decay resistance. Therefore, the effect 
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of knots on wood structures depends on various factors, including the size, location, and type 

of knots, as well as the intended use and design of the structure. To ensure the optimal perfor-

mance and longevity of wood structures, it is important to properly grade and select wood based 

on knot size and frequency, as well as to apply appropriate design and maintenance practices. 

This research work is about the classification of knots in digital images and the estimation 

of the affected defective area. Single and multiple knots are the two categories into which the 

images of knots are divided. The IncepResNet-V2 model has been employed, exhibiting an 

overall accuracy of 84% in an evaluation with a dataset of 200 photos, after being trained and 

validated on a dataset of 2000 images. For further testing the methodology, four images have 

been selected, two from the “single knot” category and another two from the “multiple knots” 

one. First, the InceptionResNet-V2 model truly classified all images into their corresponding 

categories, then the defected area was estimated using digital image processing techniques. 

The work shows the potential of AI-based methodologies in SHM and damage identification. 

Such methods can drastically improve our ability to assess the condition of structures and struc-

tural elements, offering enhanced precision and accuracy, real-time and cost-effective monitor-

ing, predictive capabilities, automation opportunities and many more. Despite these benefits, 

there are also challenges to consider, such as ensuring the robustness and reliability of AI pre-

dictions, dealing with uncertainties in the data, and maintaining data privacy and security. How-

ever, with continued research and development, AI-based methodologies hold great promise 

for the future of SHM and structural damage identification. 
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LIST OF ABBREVIATIONS 

The following table describes the meaning of various abbreviations and acronyms used 

throughout the paper. 

 

Abbreviation Definition 

AI Artificial Intelligence 

CNN Convolutional Neural Network 

CT Computerized Tomography 

Conv Convolutional Layer 

DL Deep Learning 

Fc Compressive strength 

IP Image Processing 

MOE Modulus of Elasticity 

R-CNN Region-based CNN 

ResNet Residual Network 

SHM Structural Health Monitoring 
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Abstract. Aerodynamic data plays a central role in the process of aircraft design, optimization
and certification. For these processes a vast amount of data is required for various flight con-
ditions throughout the flight envelope. Currently this data is commonly produced using Com-
putational Fluid Dynamics (CFD). However, such simulations based on the Reynolds-averaged
Navier-Stokes equations are computationally expensive and become prohibitive for tasks such
as load analysis and shape optimization. During the last decades, this has motivated research
focusing on the use of data-driven models with lower evaluation times than the full-order model
to replace high-fidelity CFD simulations. More recently, deep learning approaches have gath-
ered significant interest in the aerodynamic community. For the task of predicting surface pres-
sure coefficient distributions, one of the proposed models consists of a multilayer perceptron
that for each node in the mesh outputs a prediction of the local coefficient based on the node
coordinates and the global operational conditions. If required, known integration formulas are
used to compute integral quantities, such as the lift and pitching moment coefficients, based on
the previously obtained distribution. In this paper we train a multilayer perceptron that predicts
pressure coefficient distributions and uses known integration formulas to compute predictions of
global coefficients, both during training and inference. We examine the effect that is achieved in
the prediction of global coefficients with the use of a physics-based regularization term that dur-
ing training penalizes the multilayer perceptron if the predicted global coefficients deviate from
the reference values. The method is tested for the NASA Common Research Model transport
aircraft with an underlying mesh consisting of around 500, 000 surface points. Results show
that, when using the mentioned approach for the fine-tuning of a trained multilayer percep-
tron, physical knowledge can be explicitly revealed to the deep learning model but only limited
improvements are achieved in the predictions of the lift and pitching moment coefficients.

22



Derrick Hines Chaves∗, Mateus Dias Ribeiro, and Philipp Bekemeyer

1 INTRODUCTION

During aircraft design and optimization accurate flow field predictions are required for var-
ious operational conditions over the flight envelope in order to analyze aerodynamic perfor-
mance, structural loads and handling qualities. Computational fluid dynamics (CFD) simula-
tions are typically used to produce high-fidelity data. However, each simulation has a very high
computational cost making it infeasible to use high-fidelity Reynolds-averaged Navier-Stokes
(RANS) solvers to produce all the required data during industrial development cycles. For this
reason, fast surrogate models for the accurate prediction of flow fields and integral quantities
are of great interest. Data-driven models have gained an increasing attention in recent years.
Within this class, proper orthogonal decomposition (POD) [1] as a dimensionality reduction
technique combined with an interpolation method such as radial basis functions or Gaussian
Processes is arguably the most common method. Application examples for aerodynamics are
widespread and can be found in [2, 3, 4, 5, 6]. These models are reported to be easy to con-
struct and highly accurate as long as only linear behaviour is present. However, in transonic
flows, in the presence of shocks, the accuracy of such models reduces significantly. Therefore,
alternative methods are sought after.

Deep learning (DL) models have attracted attention in recent research due to their success
at the extraction and representation of hierarchical data features [7]. Publications are avail-
able for the prediction of aerodynamic coefficients for airfoils, including integral quantities
(lift and drag) [8], fields (surface pressure distribution) [9] as well as unsteady forces [10, 11].
In [12] convolutional neural networks are introduced to predict the velocity field in non-uniform
steady laminar flows, while several extensions are available in [13, 14, 15, 16]. An extension
towards industrial relevant 3D cases featuring transonic flows including shocks and boundary
layer separation relying on a multilayer perceptron used for the pointwise prediction of pres-
sure coefficients has been studied in [17, 18]. In recent work the model was extended to include
the surface normals as additional input achieving further improved results [19]. For the predic-
tion of integral coefficients, such as the lift and pitching moment coefficients, well-established
physical equations were used to compute them based on the obtained surface pressure coeffi-
cient distribution. However, in this approach prior knowledge about the physical system, such
as the relationship between the pressure distribution and the lift coefficient, was available but
unused during the training of the network. An often pursued alternative is to construct separate
models for distributed and global quantities of interest which can easily lead to differing trends
when using both models together.

In this paper we train a multilayer perceptron that predicts pressure coefficient distributions
and uses known integration formulas to compute predictions of global coefficients, both dur-
ing training and inference. We examine the effect that is achieved in the prediction of global
coefficients with the use of a physics-based regularization term [20] that during training penal-
izes the multilayer perceptron if the predicted global coefficients deviate from the ground truth.
The studied methodology is applied for an industrial relevant 3D case known as the NASA
Common Research Model (NASA CRM) transport aircraft. It is compared to the same model
without the physics-regularization term and to the aforementioned proper orthogonal decompo-
sition coupled with interpolation. We refer to these three methods as indirect methods because
they predict the surface pressure coefficient distribution and then as a second step calculate the
desired global coefficient. As mentioned before, a direct prediction of the global coefficients is
also possible and several methods have been proposed [21, 22]. Two of these approaches are
radial basis function interpolation (RBF) and a multilayer perceptron for global predictions. To
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provide a more comprehensive analysis, the performance of the indirect methods is compared
to the one of these direct methods. We highlight that the indirect methods have the added ben-
efit that they yield a consistent model in which the predicted integral quantities agree with the
distributed quantities. Such models can be used well beyond the prediction of a global quantity
during the multidisciplinary process of aircraft design.

This paper is organized as follows. Section 2 presents the methodology used to obtain the
ground global truth global coefficients and then describes the surrogates models. Next, Section 3
outlines further details of the test case and subsequently Section 4 discusses the results. The
conclusion is found in Section 5 and additional information are given in the Appendix 7.

2 METHODOLOGY

The three-dimensional Navier-Stokes equations in conservative form are given on a control
volume Ω and its closed surface ∂Ω by

∂

∂t

∫
Ω

W⃗dΩ +

∮
∂Ω

(F⃗c − F⃗v) dS = 0 (1)

The conservative variables are expressed by W⃗ = (ρ, ρu, ρv, ρw, ρE)⊤, where ρ is density,
u, v, w the velocity components in the spatial directions and E the total energy. F⃗c and F⃗v

are the vectors of convective and viscous fluxes, respectively. The steady state is achieved
if for all control volumes the time derivative vanishes, or equivalently if the fluxes become
zero. Employing a finite volume scheme a steady-state solution is found, yielding a pressure
distribution at the surface of the aircraft Γ formed by n faces Γi. The pressure pi is hence
obtained at each face Γi. The pressure coefficient cp,i is a non-dimensional quantity computed
as

cp,i =
pi − p∞

q∞
(2)

where p∞ and q∞ are the static pressure and dynamic pressure of the incoming flow, respec-
tively. The obtained c⃗p distribution at the surface of the aircraft is then used to obtain global
aerodynamic force and moment coefficients.

In this work we investigate the prediction of lift coefficient CL and pitching moment coeffi-
cient Cmy and omit the viscous force components during their calculation since the considered
models do not predict the skin friction coefficients. We consider the aircraft flying in a symmet-
ric flight at a given Mach number under an angle of attack α and use a body-fixed coordinate
system, shown in Figure 1a, with axial, transversal and normal directions denoted by the unit
vectors x̂, ŷ, ẑ respectively. The pressure force F⃗p,i at the face Γi is obtained as

F⃗p,i = −cp,i n⃗i (3)

where n⃗i = (ni,x, ni,y, ni,z)
⊤ = ∆sin̂i is the face normal vector, which is the outward unit

normal vector multiplied by the area of the face. The pressure forces are summed up to get a
total pressure force F⃗p over the aircraft surface as

F⃗p =
n∑

i=1

F⃗p,i (4)
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Considering a reference area SΓ, the coefficients CA and CN are calculated as

CA =
F⃗p · x̂
SΓ

, CN =
F⃗p · ẑ
SΓ

(5)

representing normalized versions of the axial and normal components of the total pressure force.
The lift coefficient CL in the aerodynamic coordinate system, which is a clockwise rotation of
α about the transversal axis as shown in Figure 1b, is calculated as

CL = −CA sinα + CN cosα (6)

yielding a normalization of lift. Overall, in this discrete physical model the lift coefficient is
obtained as a linear transformation of the pressure coefficient distribution c⃗p, dependent on the
angle of attack α and the aircraft surface geometry G.

CL = TCL
(c⃗p;α,G) =

n∑
i=1

(
ni,x sinα− ni,z cosα

SΓ

)
cp,i =: a⃗CL

· c⃗p (7)

Regarding the calculation of Cmy, the contribution of the face Γi to the moment coefficient with
respect to a reference point is obtained as

M⃗i = R⃗i × F⃗p,i (8)

where R⃗i = (∆xi,∆yi,∆zi)
⊤ is the displacement vector of the integration point in the face

Γi from the reference point. The pitching moment coefficient Cmy is given by the sum of the
y-components of M⃗i, divided by the product of a reference chord length Lchord and a reference
area SΓ:

Cmy =

n∑
i=1

M⃗i,y

Lchord SΓ

(9)

This model then gives the pitching moment coefficient as a linear transformation of the pressure
coefficient distribution as

Cmy = TCmy(c⃗p;α,G) =
n∑

i=1

(
∆xi ni,z −∆zi ni,x

Lpitch SΓ

)
cp,i =: a⃗Cmy · c⃗p (10)

(a) Body-fixed coordinate system and aircraft sur-
face Γ

D

Y

L

X

Z

α

α

(b) Aerodynamic coordinate system

Figure 1: Body-fixed and aerodynamic coordinate systems

25



Derrick Hines Chaves∗, Mateus Dias Ribeiro, and Philipp Bekemeyer

The goal of the methods in this paper is the prediction of a global coefficient C, either
CL or Cmy from operational conditions given by the Mach number, angle of attack, inboard
aileron deflection angle, outboard aileron deflection angle, elevator deflection angle and hori-
zontal tailplane deflection angle that we denote as x⃗ = (M,α, ϕinAil, ϕoutAil, ϕel, ϕhtp)

⊤. The
global coefficient is considered as a function of the operational conditions:

C = f(x⃗) (11)

We distinguish between two classes of surrogate methods for the estimation of global coef-
ficients: direct and indirect methods. Direct methods directly estimate global coefficients from
given operational conditions without considering the surface pressure distribution and the inte-
gration formulas. One of these methods is radial basis function interpolation (RBF) that obtains
the prediction as

C(x⃗) =
∑
k

wkφ(||x⃗− x⃗k||) (12)

where wk are learnable weights, φ is a radial function and x⃗k the operational conditions for
the k-th sample in the training data. In this paper we allow the augmentation of the previous
formulation with polynomials and also consider under this umbrella term Gaussian Process
(GP) interpolation with fixed and variable exponents [23]. Another direct method is a multilayer
perceptron for global predictions (MLPG) that calculates the global coefficient as

C(x⃗) = MLPG(x⃗) = WK

(
· · ·

(
W2ϕ(W1x⃗+ b⃗1) + b⃗2

)
· · ·

)
+ b⃗K (13)

where Wk and b⃗k are learnable weights and biases.
In contrast, indirect methods predict the surface pressure distribution and then use the phys-

ical equations to calculate the global coefficient. These methods have the benefit that they yield
a consistent model that guarantees that the predicted surface pressure coefficient distributions
are in agreement with the predicted global coefficient. They are aware of the integration for-
mulas 7 and 10 that establish how the global coefficients are obtained from the surface pressure
distribution, the operational conditions and the aircraft geometry. The prediction is hence done
in two steps:

y⃗ = fθ(x⃗) (14)
C = TC(y⃗) (15)

where y⃗ is the predicted distribution and θ represents learnable parameters. Proper orthogonal
decomposition coupled with interpolation (PODI) is arguably the most common data-driven
method used. Modes Φ ∈ Rn,d and lower dimensional representations Z ∈ Rd,m are computed
so that Φz⃗i ≈ y⃗i, where d is the lower dimension, and m the number of training samples. The
prediction for new parameters x⃗ is calculated as

y⃗(x⃗) = Φz⃗(x⃗) (16)
C = TC(y⃗(x⃗)) (17)

where z⃗(x⃗) are POD coefficients obtained using an interpolation technique. We refer to the
resulting model as PODI. The interest reader is referred to [24, 17, 18] for a more detailed de-
scription of this model. This work focuses on two other indirect methods, based on a multilayer
perceptron, that are described next.
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2.1 MULTILAYER PERCEPTRON FOR LOCAL PREDICTIONS

Following the work in [17, 19], in this approach the operational parameters, and the mesh
coordinates and face normals are used to perform pointwise predictions of the pressure coeffi-
cients using a multilayer perceptron for local predictions (MLPL). The prediction of the surface
pressure distribution for the parameters x⃗ is calculated as

y⃗(x⃗) =
[
MLPL(x⃗⊕ c⃗1 ⊕ ν⃗1), . . . ,MLPL(x⃗⊕ c⃗n ⊕ ν⃗n)

]⊤ (18)

where c⃗i and ν⃗i represent in the undeformed mesh the body-fixed coordinates of node i and the
unit normal of the corresponding face, respectively. The loss function is given by

Llocal = MSE(y⃗(x⃗), y⃗true(x⃗)) =

n∑
i=1

(y⃗(x⃗)i − y⃗true(x⃗)i)
2

n
(19)

After training the model, the predictions of the surface pressure distributions are used to predict
the global coefficient as

C = TC(y⃗(x⃗)) (20)

2.2 MULTILAYER PERCEPTRON WITH GLOBAL COEFFICIENT REGULARIZA-
TION

The previous model is an indirect method in which the integration formulas 7 and 10 are
only used as a post-processing step of the predicted distribution. However, during training it
disregards them, so that the model remains uniformed about the underlying physical relation
between the local pressure coefficients and the global coefficient. That results in a model that
is not directly optimized for the prediction of the desired global coefficient, so that certain de-
viations could arise. For example, if it occurs that the prediction error vector of the distribution
∆y⃗(x⃗) := y⃗(x⃗)− y⃗true(x⃗) has a high correlation with the integration coefficients a⃗C even small
individual errors in the predicted distribution can sum up to a larger error |∆C(x⃗)| in the global
coefficient. By way of illustration, at an angle of attack equal to zero and without surface de-
flections, if all surface pressure predictions at the top of the wing are higher while at the bottom
they are lower than the ground truth values, then the predicted lift coefficient can become much
lower than the actual one. This situation seems unlikely, nonetheless, the network can still de-
velop some error biases and the incorporation of the integration formulas during training can
help the model to adapt and become more accurate at the estimation of the global coefficient.

In this work we train MLPL as usual and then during the final epochs fine-tune it for the task
of global coefficient prediction, by modifying the loss function to include an additional penalty
for the deviation of the predicted global coefficients from the ground truth. As proposed in
recent work [20], a global loss function and a penalty parameter are introduced. The global loss
is multiplied by the penalty parameter and then added to the local loss to form the total loss
function as expressed by

Lglobal = MSE(C(x⃗), Ctrue(x⃗)) = (C(x⃗)− Ctrue(x⃗))
2 (21)

Ltotal = Llocal + λglobalLglobal (22)

We refer to the model obtained in this way as MLPPR, standing for multilayer perceptron
with physics regularization. A summary of the direct and indirect surrogate methods is provided
in Table 1.
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Class RBF MLPG PODI MLPL MLPPR
Direct ✓ ✓

Indirect ✓ ✓ ✓
Physics-aware training ✓

Table 1: Surrogate methods

3 TEST CASE

The test case is the NASA Common Research Model (NASA CRM), an industrial-relevant
configuration resembling a modern commercial transport aircraft. High-fidelity RANS-CFD
simulations were carried out with the DLR flow solver TAU [25], using the Spalart-Allmaras tur-
bulence model. The DLR Surrogate Modeling for AeRo data Toolbox in python (SMARTy) [26]
was used for the computation of the global coefficients and the construction of the surrogate
models. The computational grid modeling the configuration without a vertical tailplane com-
prises approximately 43 million points and the corresponding surface grid, shown in Figure 2,
consists of n = 454, 404 surface points. The grid was derived based on DLR’s experience dur-
ing the AIAA Drag Prediction Workshop [27, 28] and is a slightly improved version of the fine
grid used in [28]. Hence, results are comparable in accuracy when solving the RANS equations
coupled with the Spalart–Allmaras turbulence model. The underlying coupled fluid–structure

Figure 2: Pairplot of sampling strategy and computational mesh for the NASA CRM
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simulation used to obtain the deformed 1g flight shape was compared to results from a European
transonic wind-tunnel test campaign in [29]. A static deformation test was not part of the mea-
surement campaign done for the AIAA Drag Prediction Workshop, and no direct experimental
results are available. Note that, the flight shape is kept fixed in this paper. For further details,
such as mesh convergence studies, turbulence model influence and comparison to experimental
results as well as other codes, the interested reader is referred to the corresponding literature.

All CFD simulations were ran until a residual below e−8 was reached. In addition to the
density residual criterion, a Cauchy convergence criteria was employed for the lift and pitch-
ing coefficient with values of e−3 and 5e−5, respectively, to accelerate convergence. The
altitude was set to 37, 000 ft and the samples were parameterized by six independent parame-
ters: Mach number, angle of attack, inboard aileron deflection angle, outboard aileron deflec-
tion angle, elevator deflection angle and horizontal tailplane deflection angle that we denote
as M,α, ϕinAil, ϕoutAil, ϕel, ϕhtp, respectively. A Halton sequence was used to produce 157 six-
dimensional operational conditions, of which m = 149 were retained after running the CFD
simulations. Out of the m = 149 total samples, the first 75 are selected for training, the next 30
are selected for validation, while the remaining 44 samples are used for testing. This partition-
ing of the data is shown in Figure 2.

4 RESULTS

This section presents the results for the task of predicting global coefficients for various op-
erational conditions. Different models are built for the lift coefficient CL than for the pitching
moment coefficient Cmy, and the results are presented separately. In order to simulate a pro-
duction environment and evaluate the generalization capabilities of the models, the results are
based on the testing samples, which were not seen by the models during training and validation.
The metrics used to evaluate the performance of the models with respect to the test samples are
the mean absolute error (MAE), the median of the absolute error (MedianAE) and the maxi-
mum absolute eror (MaxAE). Additionally, for the sake of analyzing lift and pitching moment
curves, for each of the Mach numbers 0.54, 0.70, and 0.85, eight samples without control sur-
face deflections were computed with angles of attack ranging from −2◦ to 5◦.

In the case of the direct methods, a grid search approach was used to optimize the hyper-
parameters of RBF and MLPG. Tables 7 and 8 in the appendix display the optimal hyperpa-
rameters for these models. Using the selected hyperparameters, experiments for MLPG were
repeated 10 times to account for the randomness of the training procedure and results display
the obtained mean test metrics together with the standard deviation.

Regarding the indirect methods, the hyperparameters were selected as follows. For PODI,
the hyperparameters are the same as those that were obtained in [19] for the prediction of
the surface pressure distributions. The selected hyperparameters are shown in the appendix in
Table 9. In the case of MLPL, the architecture of the model was chosen based on the previous
best hyperparameters found in [19]. The batch size was changed to allow the training of one full
snapshot simultaneously, so that the model processes 454, 404 points per batch. The learning
rate, its decay factor and the number of epochs were changed accordingly to find a reasonable
model. Table 10 shows the hyperparameters for this model.

For the MLPPR, the models start with the model state of MLPL and attempt to fine-tune
the model for some additional epochs with the inclusion of the global loss. The model named
MLPLC, standing for MLPL continued, refers to the model that is trained in an equal fashion
as MLPPR but without the global loss. This is done in order to more fairly assess the benefit
of the inclusion of the global loss penalty term, as the additional benefit could also stem alone
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from training for more epochs. The optimal hyperparameters obtained using the framework
Optuna [30] for MLPPR are shown in Table 11. As in the case of MLPG, experiments for
MLPPR and MLPC were repeated 10 times.

4.1 LIFT COEFFICIENT

Table 2 shows the obtained metrics for all models, while Figure 3 displays the cumulative
distribution of the absolute error. In order to show a more detailed view of the distribution, the
results for MLPG, the worst performing model, are omitted in the plot. MLPL attains a MAE
of 3.0 × 10−3, while the MLPPR yields a MAE of 2.7 × 10−3, representing a 10% decrease
in this error metric. Meanwhile, MLPC, trained exactly as MLPPR but without the global
loss term, obtains a MAE of 3.1 × 10−3 showing no improvement with respect to base model
MLPL. The other models RBF, MLPG and PODI attain mean absolute errors of 6.1 × 10−3,
13.3 × 10−3, and 9.1 × 10−3, representing an increase in this error metric of 103%, 343% and
203%. In all three error metrics MLPPR outperforms the other models, although the median
of the absolute error remains unchanged with respect to MLPL. It can also be observed in
the cumulative distribution of the absolute error how MLPL and MLPPR outperform the other
models across almost all quantiles. Between MLPL and MLPPR the differences are much
smaller and only minor improvements of MLPPR are present.

Regarding the prediction of the pressure coefficient distributions, MLPL achieves a mean
absolute error of 12.3 × 10−3, while on average MLPPR attains in this error metric a value of
12.4 × 10−3. In comparison, PODI achieves a MAE of 19.8 × 10−3, representing an increase
of 61% with respect to MLPL. Hence, the MLPRR model is able to improve the lift coefficient
prediction slightly compared to the MLPL model without negatively impacting the pressure
distribution prediction.

Figure 4 shows the lift coefficient curves for the three selected Mach numbers for cases

Table 2: CL test metrics

Metric RBF MLPG PODI MLPL MLPPR MLPC
MAE ×103 6.1 13.3± 1.0 9.1 3.0 2.7± 0.1 3.1± 0.0

MedianAE ×103 3.4 7.3± 1.0 4.9 1.5 1.5± 0.1 1.6± 0.0
MaxAE ×103 30.1 83.6± 4.8 40.1 20.6 19.2± 0.3 21.1± 0.1

Figure 3: CL absolute error cumulative distribution
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Table 3: CL mean absolute error ×103

Mach RBF MLPG PODI MLPL MLPPR
0.54 2.0 4.9 4.5 1.1 1.0
0.70 2.7 6.7 3.7 1.7 1.5
0.85 10.1 17.7 19.3 6.4 6.2

without control surface deflections. Table 3 shows for each Mach number the mean absolute
errors over the eight angles of attack. In Figure 4a the Mach number corresponds to 0.54. All
methods give accurate predictions and their mean absolute error is below 5 × 10−3. MLPPR
achieves the lowest MAE with a value of 1.0 × 10−3, while MLPG attains the highest, 4.9 ×
10−3. MLPG is observed to underpredict at an angle of attack of 5◦, with an absolute error of
20.1× 10−3. In comparison, RBF obtains the lowest absolute error, 3.2× 10−3. At an angle of
attack of −1◦, shown in Figure 4d, PODI obtains the highest absolute error, 8.6 × 10−3, while
MLPPR obtains the lowest, 0.2× 10−3.

Figure 4b features a Mach number equal to 0.70, at the center of the sample space for this
variable. For all methods, except PODI, the mean absolute error is greater than in the previous
case. Again, MLPPR attains the lowest, 1.5 × 10−3, and MLPG, the highest, 6.7 × 10−3. As
observed, MLPG overpredicts at an angle of 4◦, obtaining an absolute error of 18.5 × 10−3,
while MLPPR achieves the lowest error, 0.2 × 10−3. At an angle of attack of 1◦, as shown in
Figure 4e, MLPG deviates the most, with an absolute error of 4.7 × 10−3, while MLPL is the
closest to the ground truth value and attains an error of 0.2 × 10−3. From a physical point of
view, however, these differences are negligible since all model predictions except the MLPG
provide accurate results which should suffice for nearly all follow on activities.

Figure 4c shows the lift curve for a Mach number equal to 0.85. For this Mach number, the
mean absolute error is the highest for all models. MLPPR still attains the lowest mean absolute
error, 6.2 × 10−3, while PODI attains the highest, 19.3 × 10−3. The predictions at an angle
of attack of 3◦ differ significantly from the reference solution. At this angle of attack, PODI
yields the highest absolute error, 46.7× 10−3, while MLPPR attains the lowest, 18.1× 10−3. It
is also observed that MLPG deviates significantly for higher angles. At an angle of 5◦, shown
in Figure 4f, MLPG deviates the most, with an absolute error of 35.7 × 10−3. In comparison,
MLPPR, attains the lowest error, 1.9 × 10−3. In contrast to both previous cases, at this Mach
number the MLPRR model has a benefit from a physical perspective as it indicates the lift
decrease due to occurring separation on the upper wing surface and provides a more robust
CL,max prediction.

4.2 PITCHING MOMENT COEFFICIENT

Table 4 shows the obtained metrics for all models, while Figure 5 displays the cumulative
distribution of the absolute error. Again the results for MLPG, the worst performing model, are
omitted in the plot. The MLPL attains a MAE of 44.5× 10−4, while the MLPPR yields a MAE
of 43.6 × 10−4, representing a 2% decrease in this error metric. Meanwhile, MLPC, trained
exactly as MLPPR but without the global loss term, obtains a MAE of 44.8 × 10−4 showing
no improvement with respect to the MLPL base model. The other models RBF, MLPG and
PODI attain mean absolute errors of 46.1× 10−4, 102.6× 10−4, and 55.6× 10−4, representing
an increase in this error metric of 4%, 131% and 25%. MLPPR outperforms all other models
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with respect to the mean absolute error, while MLPLC attains the lowest median absolute error
and RBF the lowest maximum absolute error. However, it can be observed in the cumulative
distribution of the absolute error that MLPL and MLPPR outperform RBF in most quantiles.

Figure 6 shows the pitching moment coefficient curves for the selected Mach numbers. Ta-
ble 5 shows for each Mach number the mean absolute error over the eight angles of attack. In
Figure 6a the Mach number corresponds to 0.54. MLPL achieves the lowest mean absolute

(a) M = 0.54 (b) M = 0.70 (c) M = 0.85

(d) M = 0.54, α = −1◦ (e) M = 0.70, α = 1◦ (f) M = 0.85, α = 5◦

Figure 4: Comparison of the predicted lift coefficients to the CFD reference samples without
control surface deflections

Table 4: Cmy test metrics

Metric RBF MLPG PODI MLPL MLPPR MLPLC
MAE ×104 46.1 102.6± 8.7 55.6 44.5 43.6± 0.0 44.8± 0.0

MedianAE ×104 33.7 59.6± 10.9 35.9 23.7 25.0± 0.1 23.6± 0.0
MaxAE ×104 163.7 683.9± 112.4 465.1 301.7 297.3± 0.3 301.5± 0.1
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error, 8.9 × 10−4, while MLPG yields the highest, 39.2 × 10−4. MLPG is observed to deviate
significantly at various angles of attack. It is also noticeable that RBF overpredicts at an angle
of 5◦, attaining an absolute error of 147.1× 10−4. In comparsion, MLPPR achieves the lowest
error, 7.6 × 10−4. At an angle of attack of 3◦, as shown in Figure 6d, MLPG has the highest
absolute error of 43.0× 10−4, while MLPL has the lowest, 3.5× 10−4. At an angle of attack of
−2◦, as shown in Figure 6e, MLPG presents the highest error, 49.8×10−4, while MLPL attains
the lowest error, 1.2× 10−4.

Figure 6b features a Mach number equal to 0.70. For all methods, except MLPG, the mean
absolute error is greater than in the previous case. PODI achieves the lowest mean absolute
error, 21.6× 10−4, while MLPG attains the highest, 31.7× 10−4. At an angle of attack of 5◦ the
models show higher deviations from the ground truth value. PODI presents the highest absolute
error, 104.1 × 10−4, while MLPG the lowest, 38.4 × 10−4. Throughout all models except the
MLPG at some specific angles of attack yield reasonable results for following aerodynamic and
fight mechanic analysis with correct trends as well as accurate enough moment estimates.

Figure 6c shows the pitching moment curve for a Mach number equal to 0.85. As in the
case of lift, this Mach number proves to be the most challenging and the mean absolute error
is the highest for all models. This directly results from the underlying physics with shock
induces separation and reverse shock motion especially at high angles of attack. MLPR achieves
the lowest mean absolute error, 67.7 × 10−4, while MLPG attains the highest, 150.0 × 10−4.
The predictions at an angle of attack of 3◦ differ significantly from the reference solution, as
the pitching moment starts deviating from the linear trend due to an underlying inverse shock
motion. At this angle of attack, PODI yields the highest absolute error, 303.5 × 10−4, while
MLPL attains the lowest, 185.7 × 10−4. For higher angles of attack, significant deviations can
also be observed for RBF, MLPG and PODI. At an angle of 4◦, shown in Figure 6f, RBF has the
higest error, 118.0× 10−4, while MLGP attains the lowest, 12.3× 10−4. For an angle of 5◦ the

Figure 5: Cmy absolute error cumulative distribution

Table 5: Cmy mean absolute error ×104

Mach RBF MLPG PODI MLPL MLPPR
0.54 34.7 39.2 14.9 8.9 10.1
0.70 22.2 31.7 21.6 24.9 25.7
0.85 99.7 150.0 118.1 67.9 67.7

33



Derrick Hines Chaves∗, Mateus Dias Ribeiro, and Philipp Bekemeyer

(a) M = 0.54 (b) M = 0.70 (c) M = 0.85

(d) M = 0.54, α = 3◦ (e) M = 0.70, α = −2◦ (f) M = 0.85, α = 4◦

Figure 6: Comparison of the predicted pitching moment coefficients to the CFD reference sam-
ples without control surface deflections

indirect deep learning models are the only ones able to capture the reversing trend in pitching
moment increase.

4.3 Computational Cost

For practical applications it is not only important that the data-driven models provide accu-
rate predictions of aerodynamic quantities, but also that they do so in significantly less time
than the time-consuming high fidelity CFD computations. Therefore, we provide an overview
in Table 6 of the training and evaluation times of the models to help assess the feasibility of
their use in time-critical scenarios. RBF and PODI were trained exclusively on an Intel(R)
Xeon(R) W-2135 CPU @ 3.70GHz with 12 cores. On the other hand, MLPG was trained using
an NVIDIA Quadro P4000 8BG GPU, while MLPL and MLPPR were trained on a NVIDIA
A100 40 GB GPU as they have a higher memory requirement. The two direct methods, RBF
and MLPG, take for training 4 and 25 seconds, respectively. PODI is the indirect method that
requires the least training time, taking only 7 seconds. On the other hand, the training of MLPL
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takes about 6 hours and MLPPR requires the same time plus 180 seconds for the fine-tuning of
the model. The evaluation time for all models is significantly under one second and is thus neg-
ligible with respect to the CFD simulation wall time of 19 hours using 64 cores on DLR’s High
Performance Computing System CARA. The direct methods, as they do not predict the surface
pressure coefficient distribution, are the ones that compute the global coefficient prediction the
fastest. For PODI the evaluation time is dominated by the computation of the global coefficient,
while for MLPL and MLPPR the computation of the pressure coefficient distribution takes most
of the prediction time.

Table 6: Computational cost in hours for CL models

CFD RBF MLPG PODI MLPL MLPPR
Training − 1× 10−3 7× 10−3 2× 10−3 6 6

One Evaluation 19 6× 10−8 3× 10−7 2× 10−5 5× 10−5 5× 10−5

5 CONCLUSIONS

This work studied the effect that is achieved in the prediction of global coefficients with the
use of a recently proposed physics-based regularization term that penalizes a multilayer per-
ceptron for local predictions (MLPL) of surface pressure coefficients when the predicted dis-
tributions yield global coefficients that deviate from the ground truth. This approach (MLPPR)
was tested for an industrial relevant 3D configuration known as the NASA Common Research
Model (NASA CRM) transport aircraft. It was compared to the same model without the reg-
ularization term (MLPL), and to proper orthogonal decomposition coupled with interpolation
(PODI). These were considered as indirect methods that first predict a surface pressure coeffi-
cient distribution and use the available integral formulas to calculate the global coefficients. A
comparison was also made to two direct methods that only yield predictions of global coeffi-
cients, namely, radial basis function interpolation (RBF) and multilayer perceptron for global
predictions (MLPG).

We found that the deep learning indirect methods, MLPL and MLPPR, provide in general
the best predictions for the lift and pitching moment coefficients. When using the physics-based
regularization term for the fine-tuning of a trained multilayer perceptron, only limited improve-
ments are achieved in the predictions of the lift and pitching moment coefficients. PODI, despite
being trained to predict the pressure coefficient distribution as well, did not achieve the same
accuracy as MLPL and MLPPR. With regards to the direct methods, the training of a multi-
layer perceptron to predict the global coefficients proved to be challenging given the relative
small amount of samples. Hence, in our experiments this network yielded the highest errors.
In contrast, the radial basis function interpolation approach was able to give more accurate pre-
dictions, despite being trained with the same amount of samples as the multilayer perceptron
MLPG. Regarding computational cost, all methods are capable of evaluating new samples in
nearly real-time. RBF is the method with the least training and evaluation time, while MLPL
and MLPPR require much more training time, since they predict the pressure coefficient distri-
bution but feature comparable evaluation times.

Future research could focus on the use of the studied physics-based regularization to train
the multilayer perceptron from scratch, instead of as a fine-tuning technique. Moreover, the in-
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corporation of adaptive weighting mechanisms to dynamically adapt the penalization parameter
of the global loss is a promising direction to pursue. In addition, more complex architectures
such as graph neural networks could also be extended with a physics-based regularization.
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7 APPENDIX

Table 7: RBF hyperparameters

Hyperparameter CL Cmy

interpolator Gaussian Gaussian Variable Exponent
augmenatation Linear Quadratic

scale True True
regularization True False

Table 8: MLPG hyperparameters

Hyperparameter CL Cmy

Initial learning rate 1.0× 10−3 1.0× 10−3

LR decay factor 0.999 0.999
Epochs 2000 2000

Batch size 15 15
Dimension of hidden layers 16 16

Hidden layers 5 6
Activation ReLU ReLU
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Table 9: PODI hyperparameters

Hyperparameter Value
mode retention 99.0%

interpolator Gaussian Variable Exponent
augmentation Linear

scale False
regularization True

Table 10: Base MLPL hyperparameters

Hyperparameter Value
Initial learning rate 1.0× 10−3

LR decay factor 0.999
Epochs 5000

Batch size 454, 404 (1 snapshot)
Dimension of hidden layers 128

Hidden layers 12
Activation ELU

Table 11: MLPPR continuation hyperparameters

Hyperparameter CL Cmy

Learning rate 1.0× 10−6 1.0× 10−6

Global penalty λglobal 1.0× 103 1.0× 104

Epochs 25 25
Trained Layers All Last 2
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Universitätsstraße 150, D-44801 Bochum
e-mail: francesca.dimare@ruhr-uni-bochum.de

3Technical University Berlin, Institute of Mathematics
Straße des 17. Juni 135, D-10623 Berlin

e-mail: gottschalk@math.tu-berlin.de

Keywords: Generative Adversarial Network, Turbulence Modeling, Low Pressure Turbine,
Generalization.

Abstract. Turbulent flow consists of structures with a wide range of spatial and temporal scales
which are hard to resolve numerically. Classical numerical methods as the Large Eddy Simula-
tion (LES) are able to capture fine details of turbulent structures but come at high computational
cost. Applying generative adversarial networks (GAN) for the synthetic modeling of turbulence
is a mathematically well-founded approach to overcome this issue.

In this work, we investigate the generalization capabilites of GAN-based synthetic turbu-
lence generators when geometrical changes occur in the flow configuration (e.g. aerodynamic
geometric optimization of structures such as airfoils). As training data, we use the flow around
a low-pressure turbine (LPT) stator with periodic wake impact obtained from highly resolved
LES. To simulate the flow around a LPT stator, we use the conditional deep convolutional GAN
framework pix2pixHD conditioned on the position of a rotating wake in front of the stator. For
the generalization experiments we exclude images of wake positions located at certain regions
from the training data and use the unseen data for testing. We show the abilities and limits
of generalization for the conditional GAN by extending the regions of the extracted wake posi-
tions successively. Finally, we evaluate the statistical properties of the synthesized flow field by
comparison with the corresponding LES results.
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1 INTRODUCTION

The structures of turbulent flows exhibit a wide range of spatial and temporal scales. Fine
details of turbulent structures can be captured by classical numerical methods such as Large
Eddy Simulation (LES), but they are associated with considerable computational costs. Recent
developments in the field of Machine Learning (ML), make it possible to address this problem,
where different approaches can be taken.

On the one hand, surrogate models, see e.g. [1], attempt to learn maps from design param-
eters to objective functions. Other approaches propose to use machine learning for turbulence
modeling, see e.g. [2]. More ambitious approaches use machine learning for the prediction of
entire flow fields, cf. e.g. [3]. King et al. suggested to use generative advarsarial networks
(GAN) to synthesize turbulent flows [4].

GAN synthesised solutions can be criticised as non physics based. Secondly, one could
criticise that training data first needs to be produced at high computational cost to train the
GAN, but one can use this data right away.

In our previous work [5], we addressed the first concern and proved that the application of
GAN to ergodic systems is a mathematically well-founded approach, and that we are able to
synthesize high quality turbulent flows with GAN, which well match the physics based features
of LES. To answer to the second concern, we also made the first successful attempt to gener-
alize with respect to spatial changes using the deep convolutional conditional GAN framework
pix2pixHD. I.e. we generated tubulent flow configurations for geometries that have never
been seen in the training of the GAN.

The generalizability of GAN is one of the open questions for the synthesis of chaotic scenar-
ios. Recently, this question has been addressed especially in the field of super-resolution recon-
struction of turbulent (reactive) flows. In [6], the combination of fully and under-resolved data
was used to improve the generalization capability, especially for extrapolation, for a physics-
informed super-resolution GAN (SRGAN). The authors in [7] investigated the generalization
capabilities of their proposed SRGAN framework by changing parameters in the numerical
setup such as the Reynolds number. In [8], the generalization capability of a SRGAN towards a
more complicated wake flow configuration was investigated.

In this work, we investigate the generalization capabilities of synthetic turbulence generators
with respect to geometric changes in the flow configuration. We use the flow around an low-
pressure turbine blade (T106 LPT) with periodic wake impact obtained from high-resolution
LES. We perform the synthesis of the turbulent flow using the conditional deep convolutional
GAN framework pix2pixHD conditioned on the position of a rotating wake in front of the
stator. For generalization experiments, we exclude wake positions located in certain regions
from the training data and use the unseen data for testing. We investigate two strategies for
constructing the data splits. We remove wake positions from the training data by excluding
consecutive frames or by reducing the frame rate at regular intervals. We show the abilities and
limitations of the generalization for the pix2pixHD by successively expanding the regions of
the extracted wake positions and we compare the GAN synthesized and LES turbulent flows
visually and by their statistical properties using two different physics-based evaluation metrics.
Furthermore, we track the influence of the training data reduction on the computational cost.

Outline The paper is organized as follows. We briefly summarize the concept of ergodicity
and describe the mathematical foundations behind conditional generative learning for ergodic
systems in section 2. This is followed by section 3, where we introduce the training data and
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describe the construction of the data splits used for the generalization experiments. In section 4,
we give details on the training of the GAN and the evaluation metrics and discuss the results of
our numerical experiments. Finally, in section 5 we give a conclusion and a short outlook.

2 METHODOLOGY

Our previous work [5] showed that the application of generative learning for deterministic
ergodic systems proves to be a mathematically well-founded approach since it converges in the
limit of large observation time. Below, we briefly recapitulate the notion of ergodicity for better
understanding and explain the mathematical foundations of conditional generative learning for
ergodic systems.

2.1 Ergodicity

The notion of image measure is crucial for the understanding of GAN and also for ergodicity.
Let φ : Ω → Ω′ be a measurable mapping with respect to the σ-algebra A on Ω and A′ on
Ω′. Then the image measure of a probalibity measure µ on A under a measurable mapping
φ : Ω → Ω is defined by

φ∗µ(A) = µ(φ−1(A)) ∀A ∈ A′. (1)

where φ−1(A) = {x ∈ ω|φ(x) ∈ A} ∈ A ∀A ∈ A′.
We first define a probability space (Ω,A, µ) on a dynamic system as considered in this work.

The state space Ω of a dynamic system is given by a collection of mappings φt : Ω → Ω that
satisfy φ0 = idΩ and φt ◦ φs = φs+t with φt ◦ φs(x) = φt(φs(x)) ∀x ∈ Ω. In detail, the states
φt(x) at time t ∈ R can be derived by solving a (discretized) ordinary or partial differential
equation starting in the initial state x ∈ Ω. In our case of the numerical simulation of turbulent
fluids, Ω = Rd where d is a large number of dimensions of the discretized state space of the
fluid field. Moreover, the σ-Algebra A is a collection of events of the state space A ⊆ Ω and
µ is a probability measure on A. In this work, we investigate in particular the transformation
of the probability measure by a measurable mapping, also known as image measure. For the
dynamical system, the probability measure µ is invariant if φt

∗µ = µ ∀t ∈ R holds, i.e. all
solution mappings φt are measure preserving with respect to µ. Without further mention, all
mappings are assumed to be measurable w.r.t. the suitable σ-algebra in the following. Lastly,
we define the space H := L2(Ω,A, µ) of all square-integrable functions ψ : Ω → R as the
space of physical observables.

Ergodicity of the dynamic system φt w.r.t. an invariant measure µ is defined by

lim
T→∞

1

T

∫ T

0

ψ ◦ φt(x0) dt =

∫
Ω

ψ(x) dµ(x) = Ex∼µ[ψ(x)] ∀x0 ∈ Ω . (2)

Hence, ergodicity equates the time average of a dynamic system with the ensemble average of
its invariant measure [9, 10, 11].

In our numerical experiments, we do not train on data of the entire state-space Ω but we
extract specific quantities related to trubulence. This can be described by a mapping π : Ω → Ω′

with Ω′ the reduced state space. Even if the dynamics φt can not be consistently formulated on
the reduced state space Ω′, ergodicity remains satisfied on Ω′. Let π∗µ be the projected measure.
Assuming the ergodicty of the dynamic system on the entire state-space Ω, we obtain

lim
T→∞

1

T

∫ T

0

ψ ◦ π ◦ φt(x0) dt =

∫
Ω′
ψ(x′) dπ∗µ(x

′) ∀x0 ∈ Ω (3)
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Figure 1: Architecture of a conditional GAN. According to: [12, 13]. The generator produces
fake samples ϕ(z|η) ∼ ϕ(·|η)∗λ with the random noise vector z ∼ λ conditioned on the
additional information η as its input. Here, η is a binary segmentation mask that contains the
position of a rotating wake in front of the stator. The discriminator receives both, fake as
well as real samples, and estimates the probability that the given input sample comes rather
from µ|η than from ϕ(·|η)∗λ. Hence, the output of D is a single scalar value per sample in
the range of [0, 1]. During training, the feedback from the discriminator reaches the generator
when the weights of the GAN framework are updated by backpropagation. Here, the entire
GAN framework can be backpropagated in one go using the same loss function for ϕ and D.
This is because both networks are fully differentiable and trained end-to-end. The problem (5)
reaches its optimum when the generator captures the real-worlds distribution, through which
the discriminator is unable to distinguish real from fake samples, i.e. ϕ(·|η)∗λ = µ|η and
D(·) = 1/2.

when f ◦ π ∈ H. This easily follows from (2) and
∫
Ω′ ψ(x

′) dπ∗µ(x
′) =

∫
Ω′ ψ ◦ π(x) dµ(x),

known as the general transformation formula.
Summarizing, GAN in turbulence doe not necessarily resolve the dynamics of the turbulent

flow, but rather attempt to learn an representation of µ or π∗µ, directly. As physical evaluations
in the study of turbulence usually compute long time averages to capture the flow characteris-
tics, the learned representation of µ or π∗µ enables the same evaluations and therefore a direct
comparison to the numerical simulation.

2.2 Mathematical foundations of conditional generative learning for ergodic systems

In this work, we synthesize turbulence using the conditional deep generative adversarial
network (cDCGAN) pix2pixHD [13, 14, 15]. A cDCGAN consists basically of the two
mappings ϕ : (Λ,V) → Ω and D : (Ω,V) → [0, 1] referred to as generator and discriminator.
Here, Ω is a space containing the real-world data related to a family of unknown probability
distribution {µ|η}η∈V and Λ is a space of latent variables associated with a simple probability
measure λ like uniform or Gaussian noise. Furthermore, V is a space describing the additional
information, on which the GAN framework is conditioned, endowed with its corresponding
probability distribution ν. Thereby, the additional information can be provided, for example, by
class labels or (semantic) segmentation masks as in our case (see figure 1). Conditioning a GAN
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framework with supplementary information makes it possible to control the data production
process performed by the generator which transforms the noise measure λ conditioned on η
which is a sample of the random variable η ∼ ν to the image measure ϕ(·|η)∗λ.

The goal of adversarial learning is to learn a mapping ϕ from the feedback of the discrim-
inator D such that D is unable to distinguish synthesized samples of ϕ∗(λ|η) from real-world
data sampled from the conditioned target measure µ|η. During training, D learns to classify
if an input sample comes rather from µ|η than from ϕ∗(λ|η)∗λ by assigning real-world data a
high probability of being from µ|η and synthesized data a low probability. Generative learning
is successful, if ϕ is so well trained, that even the best discriminator is unable to distinguish
between samples from µ|η and ϕ∗(λ|η).

In case of the cDCGAN, the generator and discriminator are defined as convolutional neu-
ral networks (CNN) [14] which are well-known for their successful application in the field of
image processing [16, 17]. In order to train the weights of ϕ, the feedback of D for ϕ is per-
formed by backpropagation [18] through the concatenated mapping D ◦ ϕ. Here, the universal
approximation property of (deep) neural networks guarantees that any mappings ϕ and D can
be represented with a given precision under the condition that the architecture of the networks
is sufficiently wide and deep [19].

The training is structured as two-player min-max game between the discriminator and the
generator by solving the optimization problem

min
ϕ

max
D

Lcond.(D,ϕ) (4)

with the binary cross-entropy [20] as loss function

Lcond.(D,ϕ) = Ex∼µ
η∼ν

[log(D(x|η))] + E z∼λ
η∼ν

[log(1−D(ϕ(z|η)))] (5)

where E is denoting the expected value.
In this work, we investigate a special type of cDCGAN called pix2pixHD [15] which al-

lows us to generate high-resolution photo-realistic images from semantic segmentation masks
by modifying the architecture of ϕ and D and extending the loss-function (5). The generator ϕ
is composed of two subnetworks ϕ1 and ϕ2 assuming the role of a global generator and a local
enhancer. This results in a coarse-to-fine generator ϕ = {ϕ1, ϕ2} aggregating the global and lo-
cal information effectively. Instead of a single discriminatorD, three multi-scale discriminators
D1, D2 and D3 are installed into the pix2pixHD framework, which have an identical net-
work architecture but operate with three different image resolutions. This leads to the extended
optimization problem

min
ϕ

max
D1,D2,D3

3∑
i=1

Lcond.(ϕ,Di) . (6)

By downsampling the input images of the certain discriminators by factor two and four, the
pix2pixHD creates a pyramid of images during the training. The discriminator operating
on the coarsest scale has the largest receptive field which makes it is possible to guide the
generator ϕ producing globally consistent images. By the discriminator working on the finest
scale, the generator’s attention can be directed to finer details in the data production. Lastly, the
introduction of a feature matching loss LFM defined as

LFM = Ex∼µ
η∼ν

[
L∑

j=1

1

Nj

(
∥D(j)

i (x|η)−D
(j)
i (ϕ(z|η))∥1

)]
(7)
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stabilizes the training of the pix2pixHD. Here, D(j)
i represents the jth-layer feature extractor

[21] of the discriminator Di, i = 1, 2, 3, L defines the number of layers, Nj, j = 1, . . . , L
provides the number of elements contained in each layer and ∥·∥1 denotes the l1-norm. Hence,
the final optimization problem can be defined as

min
ϕ

[(
max

D1,D2,D3

3∑
i=1

Lcond.(ϕ,Di)

)
+ γ

3∑
i=1

LFM(ϕ,Di)

]
(8)

where γ is the weighting parameter.

3 DATA GENERATION

3.1 Setup of experiments

We perform our experiments on the test case of a flow around an academic low-pressure tur-
bine blade (T106 LPT) with periodic wake impact obtained from highly resolved Large Eddy
Simulations (LES) [22, 23]. Here, the wakes are artificially generated by an upstream rotating
bar grid and convected into the stator passages where the rotation of the flow within the pas-
sage leads to their deformation. In addition, the interaction between the periodically detaching
boundary layer and the wakes occuring in the rear region of the LPT stator suction side makes
this test case to an interesting example of complex turbulent interactions.

Post-processing the transient LES velocity field data generates the grayscale images (see
figure 2a) used for GAN training and statistical evaluation. Here, in the sense of (3), a projection
mapping is chosen that represents the velocity component perpendicular to the image denoted
by w(ξ, t). In the upper left corner is the gray scale for w(ξ, t) ≈ 0. Negative values for w(ξ, t)
are displayed in lighter gray and positive values in darker grey. Hence, the smaller the value for
w(ξ, t) is, the lighter the gray becomes, and vice versa.

The numerical setup of the LES can be found in [5]. In total, the data set consists of 2, 250
images, corresponding to 10 bar passing periods, with a resolution of 1, 000× 625 pixels.

In addition to the grayscale images, the binary segmentation masks (see figure 2b) are needed
for both, GAN training and inference time which refers to the process of applying a trained
generator to unseen data. These masks represent the position of the rotating wake in front of
the stator.

(a) T106 turbine stator (b) Binary segmentation mask

Figure 2: A grayscale image for turbulence in the setting of a T106 turbine blade (figure 2a and
its corresponding binary segmentation mask figure 2b.
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(a) Exclusion of sequential frames (b) Reduction of the frame rate at regular intervals

Figure 3: Examples for the regions of the rotating wake positions excluded from the GAN
training (marked by red boxes) in case a certain number of consecutive frames do not go into
the GAN training (figure 3a) or the frame rate is reduced at regular intervals (figure 3b).

3.2 Computational cost

The LES is performed on a partition of the High-Performance Computing (HPC) cluster of
the Chair of Thermal Turbomachines and Aero Engines featuring Intel Xeon “Skylake” gold
6132 CPUs with 2.6 GHz and 96 GB RAM. For the simulation, 20 nodes with 28 cores each
had to be allocated and the computation time was approximately 8 days, which corresponds to
640 core weeks.

3.3 Data set splits

For the generalization experiments we exclude images of wake positions located at certain
regions from the training data and use the unseen data for testing. We study the abilities and
limits of generalization for the cDCGAN by extending the regions of the extracted wake posi-
tions successively and hence reducing the variation in the training data. The data set consists
of 2, 250 images corresponding to 10 bar passing periods as described above. We exclude a
certain percentage from each of these periods from the training representing the test data. Here,
we investigate two strategies for constructing the data splits. The first strategy is to extract con-
secutive frames starting at 5% and increasing iteratively in steps of five percentage points up to
50% (see figure 3a. The second strategy is to extract a certain percentage of images starting at
20%, increasing iteratively in ten percentage point steps up to 90%, by reducing the frame rate
at regular intervals, where the number of intervals varies from 5, 10 and 20. Figure 3b shows
that the higher the number of intervals, the smaller the reduction of the frame rate at the certain
region. This results in 10 different data splits when excluding consecutive data frames, and 24
different data splits when using the strategy of reducing frame rates at regular intervals. Ad-
ditionally, we construct a test dataset consisting of 225 frames describing a full period for the
evaluation of the physics-based metrics, in order to obtain a direct comparison and to consider
how the lack of variation in the training data also affects the GAN synthesized turbulence of
wake positions not excluded from the training.
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4 RESULTS OF EXPERIMENTS

In this section we present and discuss the results of the numerical experiments. For this,
we first provide the implementation details of the cDCGAN framework pix2pixHD setup
and trained using PyTorch [26] . We compare the turbulence produced by GAN and LES on
a visual level and consider their statistical properties, which are captured by physics-based
metrics. Before going into the details of the results, we introduce these metrics in section 4.2.

4.1 Implementation details for cDCGAN training and inference

For the experiments with the pix2pixHD framework, we use the original implementation
[15] with small modifications. We replace the reflection padding with a replication padding and
add a replication padding to the global generator before the convolution during the downsam-
pling procedure to prevent artifacts from appearing in the data synthesized by the generator ϕ.
In the following, we often use the term inference to refer to the process of applying a trained
generator to unseen data. As described in section 2 additional information η is incorporated into
the cDCGAN training and at inference time. Here, η are binary segmentation masks (see sec-
tion 3), corresponding to a uniform distribution η ∼ νunif. over the wake coordinate y. We train
the pix2pixHD using the data splits described in section 3.3. Training requires the grayscale
images obtained from LES and the binary segmentation masks, while inference requires only
the binary segmentation masks excluded from training. In practice, noise is not included in the
pix2pixHD framework, since previous work shows that it is ignored while training [27]. With
regard to the image size w × h, w ̸= h, it must be taken into account for training purposes
that w and h are divisible by 32. For this reason, we resize the images for training to the size
w × h = 992 × 624 while preserving the aspect ratio. We train the pix2pixHD for all data
set splits for 200 epochs with a batch size of 10 and a learning rate of 2 × 10−4, updating the
weights using the Adam optimizer [28] with the parameters β1 = 0.9 and β2 = 0.999.

4.2 Physics-based evaluation metrics

We compare GAN synthesized and LES turbulence by quantities that can be cast in an ab-
stract form Ex∼µ[ψ(x)] of (2) and (3) given a certain evaluation function ψ. Our previous work
[5] shows that this approach is reasonable since any statistic evaluated on GAN synthesized
flow fields converges on average to the corresponding statistic evaluated on LES data in the
limit of large data and large network capacity, which makes this convergence uniform over all
uniformly bounded functions ψ.

We evaluate the LES and GAN synthesized image xξ at pixel ξ showing a snapshot of the
z-component Vz(ξ, t) of the velocity field at fixed time t using two different metrics. For the
turbulence patterns xξ = Vz(ξ) in front of the rotor blade we compute the correlation

ρVz ,Vz(p) =
covµ [Vz(ξ(τ)), Vz(ξ(τ) + p)]

σVz(ξ(τ))σVz(ξ(τ)+p)

, (9)

where ξ(τ) is a point that is co-moving with the wake and p is a vector pointing in the opposite
direction of the vector connecting ξ(τ) to the wake. Here, the co-moving pixel ξ(τ) is chosen
to have a high degree of variation in Vz(ξ(τ)) (see figure 4). Furthermore, cov denotes the
covariance defined by

covµ [Vz(ξ(τ)), Vz(ξ(τ) + p)]

= Ex∼µτ [ψ2,ξ(τ),p(x)]− Ex∼µτ [ψ1,ξ(τ)(x)]Ex∼µτ [ψ1,ξ(τ)+p(x)] ,
(10)
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Figure 4: Areas examined to compare the moving average of the velocity field z-component for
w(ξ, t) > 0 (blue shaded) and the turbulent flow field correlations (pink shaded). In the close-up
(right), the arrow shows the directory of the vector p and the dot describes the co-moving pixel
ξ(τ).

where µτ is the limiting measure of the turbulent flow conditioned on the wake position at time
τ , using the evaluation functions ψ1,ξ(x) = xξ and ψ2,ξ,p(x) = xξxξ+p. The standard deviation
represented by σ can be derived analogously using evaluation functions.

For the turbulence patterns xξ = Vz(ξ, t) in the rear region of the LPT stator suction side,
we compute the moving average of the velocity magnitude for w(ξ, t) > 0. As described in 3
the velocity component w(ξ, t) > 0 is displayed by darker grey values and the gray scale for
w(ξ, t) ≈ 0 is in the upper left corner of the image. To obtain the information about which
pixel values of the image xξ satisfy the condition w(ξ, t) > 0, we apply an image thresholding
technique [29], which results in a binary image. Hence, we segment xξ using the rule

s(ξ, t) =

{
0, Vz(ξ, t) > ϵ(ξ, t)

255, Vz(ξ, t) ≤ ϵ(ξ, t)
(11)

with s(ξ, t) the pixel value of the binary image and ϵ(ξ, t) an adaptive threshold calculated
at each pixel ξ individually by computing the cross-correlation with a Gaussian window [30]
over the neighbourhood of ξ minus a constant C. The neighbourhood is defined by a quadratic
structuring element [31] of size 15× 15 pixels with ξ in the center and C = VZ(0, t) is the gray
scale of the upper left corner. Using the normalized values of s(ξ, t) we evaluate the moving
average ψ(x) = xξ at pixel ξ expressed by 1

T

∫ T

0
s(ξ, t) dt = Ex∼µ[xξ] whereby this function is

bounded on the normalized data. The evaluations are performed over a small grid of 20 pixels
in x-direction immediately after the rotor blade along the y-axis as shown in figure 4.

4.3 Results of excluding sequential frames

We start by examining the generated turbulence in front of the LPT stator. Figure 5 shows
that there are problems in the generation of turbulence starting from the exclusion of a whole
region of 30%. When excluding successive frames, it is significant that the more the wake
position is located within the unseen training region, the more problems the GAN encounters in
generating. From the exclusion of 30% of the training data, we can observe that the generated
turbulence near the edge of the excluded area is of much better quality than those with wake
positions in the center of the excluded region. Here, we see that turbulent flows disappear and
that even artifacts are generated. These visual impressions are reflected in the correlations (see
figure 6).
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Figure 5: Comparison of LES (top row) and GAN synthesized (middle and bottom rows) turbu-
lent flow fields, where the generator ϕ is not trained on the consecutive wake positions located
in the red shaded region. The middle row is a direct comparison to the LES turbulence above
and shows turbulence synthesized from wake positions located at the outer end of the extracted
region. The bottom row shows GAN synthesized turbulence with the wake position in the cen-
ter of the extracted region.
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Figure 6: Comparison of the pointwise correlation for the LES and GAN synthesized turbulent
flow fields, where the generator ϕ is not trained on a certain percentage of consecutive wake
positions. The figure at the bottom row on the right shows the evaluation results for an entire
period. The red and blue shaded areas indicate the 95% confidence intervals of the respective
curve.

The comparison of LES and GAN synthesized flow for the wake positions not seen in training
shows, that the curves of the GAN synthesized images deviate from those of the LES curve
especially by an exclusion of 40% of the training data. Note that the test data sets become
larger with the reduction of the training data, so that in the cases of 10% and 20% exclusion
outliers can have a stronger effect on the evaluation metric. Therefore, we also compare the LES
and GAN synthesized images over an entire period of 225 images. Here, we see that especially
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LES GAN 10% GAN 30% GAN 50%

Figure 7: Comparison of LES and GAN synthesized turbulent flow in the rear region of the LPT
stator suction side, where the generator ϕ is not trained on a certain percentage of consecutive
wake positions.

the curve for the GAN synthesized images with 40% less training data deviates from the LES
curve. However, we also observe that all curves of the GAN synthesized images are within the
confidence interval of the LES curve, indicating that the lower variation in training does not
have a negative impact on the generation of turbulence for the wake positions included in the
training.

A behavior similar to the turbulent flow in front of the LPT stator is observed for the GAN
synthesized flow in the rear region of the LPT stator suction side. Figure 7 shows that the quality
of the GAN turbulence is excellent compared to the LES turbulence when the training data is
reduced by 10%. The quality decreases reaching a reduction of 30% for the training data by ϕ
which generates artifacts. This decrease continues to grow and at the level of 50% reduction
of the training data, the generated turbulent flow is no longer incisive. The examination of
the moving average ψ of the velocity field z-component w(ξ, t) > 0 (see figure 8) reflects the
visual impression. Except for a few outliers, the curve of the GAN synthesized turbulent flow
lies within the 95% confidence interval of the LES curve when the training data is reduced by
10%. The more the training data is reduced, the more confused the curve becomes. For a better
comparison, we also evaluate ψ on the GAN synthesized and LES turbulence of a full period.
Here, we observe that the curve of the GAN synthesized turbulence is in excellent agreement
with the curve of the LES, especially up to a reduction of 30% of the training data. Thus, the
reduction of the training variance has no negative impact on the turbulent flow in the rear region
of the LPT stator suction side.

4.4 Results of frame rate reduction at regular intervals

The second setup for the generalization experiments is to reduce the training data by a certain
percentage by reducing the frame rate at regular intervals, where the number of intervals varies
from 5, 10, and 20. As described in section 3.3, the consequence is that the higher the number
of intervals, the smaller the reduction of the frame rate in a given region.

Figure 9 shows that the choice of the number of intervals is of great importance. We see
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Figure 8: Comparison of the moving average of the velocity field z-component for w(ξ, t) > 0
for LES and GAN synthesized turbulent flow in the rear region of the LPT stator suction side,
where the generator ϕ is not trained on a certain percentage of consecutive wake positions.
The top row shows the evaluation results for the wake positions which are excluded from the
training, while the bottom row shows the results for an entire period. The red and blue shaded
areas indicate the 95% confidence intervals of the respective curve.

that the quality of the turbulent flows synthesized by GAN becomes much better as the number
of intervals increases. For an interval number of 5, we obtain GAN synthesized images of
poor quality, especially when the training data is reduced by 60% and 80%, since parts of the
turbulent flow vanish and artifacts are generated. However, for the interval numbers of 10 and
20, we obtain GAN synthesized turbulence that can visually match that of LES when the training
data is reduced by less than 80%. Taking a closer look, we can see that the turbulence patterns
synthesized by the GAN trained on only 20% of the original training data do not contain as
much variation compared to the one of LES. The correlation comparison of the LES and GAN
synthesized turbulence mirrors the results at the visual level (see figure 10). Up to a reduction
of 40% of the training data, the correlations of the GAN synthesized turbulence are in excellent
agreement with those of the LES for an interval number of 20. Up to 70%, only a slight decrease
in performance can be observed. By reducing the training data to 80%, we obtain completely
different curves for the correlation of the GAN synthesized turbulence compared to the one of
LES. Here, the evaluation over an entire period is not shown additionally, since the proportions
of the wake positions not seen in the training account for the largest part of the period at these
high percentage values and the curves shown here are therefore already representative.

For the GAN synthesized turbulent flow in the rear region of the LPT we can observe a
similar behavior. Figure 11 shows that the quality of the GAN synthesized images increases
by increasing the number of intervals, especially when the training data is reduced by 60% and
80%. Comparing the moving average ψ of the velocity field z-component for w(ξ, t) > 0 shows
that the GAN synthesized turbulent flow is in excellent agreement with that of the LES using
an interval number of 20 when the training data is reduced by less than 80% (see figure 12).
Analogous to the correlation comparison, the curves for ψ of the GAN synthesized turbulence
compared to the LES are completely different by a reduction of 80% of the training data.
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Figure 9: Comparison of LES and GAN synthesized turbulence, where the generator ϕ is trained
on data sets with reduced frame rate at 5 (top), 10 (middle) and 20 (bottom) regular intervals,
given a certain percentage of data to be excluded.
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Figure 10: Comparison of the pointwise correlation for the LES and GAN synthesized turbulent
flow fields, where the generator ϕ is trained on data sets with reduced frame rate at 5, 10 and
20 regular intervals, given a certain percentage of data to be excluded. The red and blue shaded
areas indicate the 95% confidence intervals of the respective curve.

4.5 Computational cost

The GAN training and inference are performed on a GPU of type NVIDIA A100 with 80
GB. For the first setup of the generalization experiments, where we reduce the training data by
excluding sequential frames we reach the limit for generating high quality turbulence at a 30%
reduction of the training data. Training the pix2pixHD using 75% of the original training
data takes 12 minutes per epoch, resulting in a total of 1.67 training days in total. For the
second setup of our experiments, where we reduce the training data by reducing the frame rate
at regular intervals we are able to generate high quality turbulence up to an extraction of 70%
of the training data. Training on only 30% of the original training data results in a training
time of 6 minutes per epoch and thus less than a day of training. For comparison, pix2pixHD
training on all of the 2, 250 images takes about 15 minutes per epoch, or more than two days
in total. The pure inference time for all trained generators is 0.01 seconds per frame. Thus,
the production of 2, 250 frames of the LPT stator under periodic wake impact takes about 22.5
seconds of inference with the pix2pixHD.
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Figure 11: Comparison of LES and GAN synthesized turbulence in the rear region of the LPT
stator suction side, where the generator ϕ is trained on data sets with reduced frame rate at 5
(top) and 20 (bottom) regular intervals, given a certain percentage of data to be excluded.

5 CONCLUSION AND OUTLOOK

We demonstrated the capabilities and identified the limits for the generalization of the condi-
tional GAN pix2pixHD considering the test case of flow around an LPT stator under periodic
wake impact. We found that it is possible to reduce the required amount of training data by
70% by reducing the frame rate at 20 regular intervals. As a result, we do not need to simulate
as much data for training, which saves computational time for simulation. We also save com-
putation time by reducing the training time of the GAN by more than 50% with less data. In
conclusion, we are able to generate high quality turbulence in a complex environment with the
conditional GAN, which is excellently matched to the one of the LES visually and in terms of
its statistical properties, while significantly reducing the computational time for the training and
the generation of the turbulence compared to the LES.

We have shown that conditional GAN has great potential for generalization, but also that the
generalization has limits if the change in geometry is too far away from the data used in GAN
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Figure 12: Comparison of the moving average of the velocity field z-component for w(ξ, t) > 0
for LES and GAN synthesized turbulent flow in the rear region of the LPT stator suction side,
where the generator ϕ is trained on data sets with reduced frame rate at 5, 10 and 20 regular
intervals, given a certain percentage of data to be excluded. The red and blue shaded areas
indicate the 95% confidence intervals of the respective curve

training. This raises further interesting questions. In particular, it is of interest whether it can
be also generalized over the design of the rotor blades. Furthermore, the statistical properties
of the GAN synthesized turbulence are in reasonable agreement with the LES turbulence up to
a limit, without introducing any physical information into the GAN framework. The next steps
are to incorporate physical parameters into the GAN training in the sense of [32] with the aim
to further improve the quality of the generated turbulence and to investigate if the limitations
regarding the generalizability can be positively influenced by feedback from physics.
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Abstract. Multidisciplinary design and optimisation in aeronautics is a time-consuming pro-
cess that requires extensive exploration of various configurations using costly simulations. In
this study, we propose the development of a data-driven surrogate model to serve as a pre-
dictive tool during the preliminary design process. We utilise the Isometric Feature Mapping
(Isomap) technique to identify a low-dimensional manifold where training dataset information
is encoded. Our algorithm is fed with distributions of pressure coefficients on 3D wings, fea-
tured by varying geometry and under different flight conditions. We create a two-block decoder
through a Deep Neural Network (DNN), which maps the design parameters to the manifold
space. Additionally, we use back-mapping based on the k-nearest neighbour to reconstruct the
pressure coefficient distributions. This technique, called Isomap+DNN, is compared to direct
interpolation in the design parameter space. Our results indicate that, although the perfor-
mance of the two methods is similar, Isomap+DNN is superior in predicting configurations
with stronger compressibility effects.
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1 INTRODUCTION

The contemporary aerodynamic design heavily relies on computational fluid dynamics (CFD)
simulations, which are computationally expensive and time-consuming. Currently, preliminary
and intermediate stages of technological development rely on simplified models that provide
a satisfactory quality of aerodynamic data while costing significantly less than high-accuracy
methods, such as direct numerical simulations (DNS). Recent advancements in the field of
reduced-order modelling (ROM) and machine learning (ML) have introduced novel models that
aim to facilitate a more efficient design process based on surrogates to reduce the costs associated
with expensive computational resources [1].

The optimisation of aerodynamic design using surrogate models relies on iterative model
refinement [2]. These surrogate-based optimisation techniques have proven useful in a variety
of aerodynamic shape optimisation applications [3]. The effectiveness of surrogate-based
optimisation is strongly related to the performance of the surrogate model, which has been
enhanced through the use of ML. Additionally, ML facilitated dimensionality reduction in shape
design variables through modal shape parameterisation. Recently, a surrogate-based optimisation
method utilising a reduced set of wing modes was demonstrated to be nearly as efficient and
effective as CFD-based optimisation utilising all design variables [4]. This study focuses on
the development of efficient and robust surrogate models combining adequate dimensionality-
reduction techniques and regression models.

Notwithstanding the intrinsic nonlinear nature of transonic phenomena, these flows are
characterised by recurring flow patterns and physical features that can be acquired through
simulations or experimental data. Proper Orthogonal Decomposition (POD) [5], also known in
the field of statistics as Principal Component Analysis (PCA) [6], is one of the most popular
methods in both fluid mechanics and aeronautics for dimensionality reduction. Its applicability to
surrogate models for aerodynamic data has been investigated by integrating it with an interpolator
in the low-dimensional space (i.e. the basis composed of the POD modes) [7]. Within the field
of statistical learning [8], a wide portfolio of dimensionality-reduction algorithms is available.
The ability to compute low-dimensional data representations presents an opportunity to identify
embedded manifolds of the flows under study. In this investigation, we employ a nonlinear
manifold learner and integrate it with a regression model to predict transonic three-dimensional
flows. Notably, manifold learning encompasses techniques such as locally linear embedding
(LLE) [9], multi-dimensional scaling (MDS) [10] or isometric feature mapping (Isomap) [11].
The latter is the method considered in this study. The primary objective of manifold learning is
to identify the surface (i.e., manifold) upon which the data resides or which closely approximates
the dataset. The manifold serves as a geometric representation of the intrinsic relationships that
exist between snapshots. Intriguingly, the evolution of various types of high-dimensional data can
be simplified within the manifold, allowing for the identification of the principal characteristics
underlying such evolution.

In contrast to conventional linear dimensionality-reduction techniques, such as POD, Isomap
assumes that the high-dimensional data lie on a low-dimensional manifold. Isomap identifies the
nonlinear features underlying complex natural observations by computing geodetic distances.
While Isomap has been applied in various fields, its use in fluid mechanics and aeronautics
has been limited, with few studies identifying manifolds from flow-visualization data [12], in
the combustion field [13], and, recently, to understand the physics in shear flows [14]. Franz
et al. [15] developed Isomap+I, a parametric ROM to predict shock waves on a 3D wing in
the transonic regime. This methodology represents the state-of-the-art application of Isomap
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to surrogate modelling in aerodynamics. A recent study on aerodynamic shape optimisation
of a hypersonic vehicle [16] demonstrated that Isomap and LLE could lead in the regions
near the shock waves to more accurate predictions than POD-based models. Similarly, our
recent study on transonic wings [17] highlighted the superior performance of a surrogate model
combining Isomap and Deep Neural Networks (DNN) to predict pressure distributions compared
to POD-based methods or direct DNN regression without dimensionality reduction.

This contribution presents a proposal for a surrogate model aimed at optimizing the aerody-
namic shape of transonic wings. The model is based on manifold learning applied to aerodynamic
data obtained from CFD simulations. The database spans different flight conditions (Mach num-
ber and angle of attack) and geometry (through sweep angle, thickness, and span relative to a
baseline configuration). To extract the nonlinear features of the data, the Isomap dimension-
ality reduction technique is combined with a Deep Neural Network (DNN) [18], which has
demonstrated extraordinary performance in fitting data. Previous studies have demonstrated the
applicability of artificial neural networks in the design process of airfoils [19] and nonlinear
system identification techniques, frequently used to model fluid systems [20]. Additionally, sur-
rogate models using artificial neural networks have been previously applied to predict the global
force coefficient of wings [21]. Several algorithms have been proven sturdy for aerodynamic
data prediction [22]; however, the combination of dimensionality reduction techniques with
DNNs remains relatively unexplored. The surrogate models are developed in the low-data limit,
where only a limited number of simulations are feasible, such as in the early design phase. The
performance of each method is assessed using a database of CFD simulations of a 3D wing in
the transonic regime, with the strengths and weaknesses of each approach described.

The paper is structured as follows: First, the methodology is presented in Section 2, start-
ing with a brief theoretical background of the Isomap method, and is followed by a concise
description of the Deep Neural Network regression model. Thereafter, the performance of the
proposed Isomap+DNN model combining flight conditions and geometric variations as design
features is evaluated. A set of results is presented in Section 3, for customary cases and finally,
the conclusions are drawn in Section 4.

2 DEVELOPMENT OF THE SURROGATE MODEL

This section presents a detailed account of the methodology and database employed in
this work. It commences with an outline of the database and the geometry of the model under
consideration. Subsequently, the Isomap low-dimensional embedding is presented with a detailed
analysis of the relevance of each feature. Additionally, a brief description of the used Deep
Neural Network is provided.

2.1 Database and test case

The selected test case is a database of CFD simulations of the XRF1 model, which is a
test case provided by Airbus to show the application of different technologies to a long-range
wide-body aircraft. The simulations build upon a simplified version of the XRF1 geometry,
excluding the engine and both the horizontal and vertical tailplanes, while allowing several
geometric variations with respect to the baseline design (from now on denoted by the subscript
‘0’). The considered geometric variations are expressed in terms of the wing-span ratio b/b0,
increment of sweep angle ∆Λ (= Λ − Λ0), and the thickness ratio of the wing t/t0. A total
of 60 different wing geometries are simulated for 49 combinations of Mach number M and
angle of attack α spanning over the design region of the flight envelope. A summary of the flow
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Flight condition Geometric features
α 2◦, 3◦, 4◦, 5◦, 6◦, 7◦, 8◦ b/b0 0.9, 1.0, 1.1, 1.2
M 0.70, 0.74, 0.78, 0.80, 0.82, 0.84, 0.86 ∆Λ -5◦, -2◦, 0◦, +2◦, +5◦

t/t0 0.9, 1.0, 1.1

Table 1: Definition of the different flight conditions and geometric features used to build the database. A total of 49
flight conditions and 60 wing geometries, summing up 2940 simulations.

(a) (b) (c)

Figure 1: Schematic representation of the different geometric parameters used to generate the database. The
geometric parameters describe an alteration of the nominal geometry, denoted with subscript 0 (a) Increment of
sweep angle ∆Λ = Λ− Λ0 in degrees, (b) scaling of the wing span b/b0, and (c) scaling of thickness ratio t/t0.

and geometric features and their range is provided in table 1 and the geometric variations are
sketched in figure 1. Additionally, it is noted that the load factor (nz = L/W , being L the lift
and W the weight of the aircraft) is fixed at nz = 1 for all the cases.

The aerodynamic data is obtained by RapidCFD computations based on the BLWF code
[23] developed by researchers at the Central Aerohydrodynamic Institute (TsAGI) [24]. This
code solves a boundary-value problem for the full velocity-potential equation and viscosity is
considered in the boundary layer approximation with a fixed position of the laminar-to-turbulent
transition. The method simulates the occurrence of local supersonic areas and shock waves,
provides computations of flows with small separation zones and is reliably verified. A total
of 2940 simulations are performed combining the flight conditions and geometric alterations
described in table 1. For each of these cases, the distribution of the pressure coefficient Cp on
the wing surface is computed, which is interpolated in a common structured grid featured by
6519 points, covering 41 wing sections along the span with 159 grid points each.

The study is performed in the low-data limit, emulating a preliminary design phase in which
either CFD simulations or wind-tunnel experiments are not affordable. Consequently, the 2940
cases composing the database split into two sets: the training set (30% of the database, 882
cases) used to compute the Isomap embedding and to train the DNN; and the test set with all
the remaining cases (70% of the database, 2058 cases) to challenge the trained surrogate model,
assessing its capability to interpolate Cp within the whole design space. The cases within the test
set are never considered for either computing the low-dimensional embedding or training the
DNN coefficient. For now on, four cases within the test set are chosen for visualisation purposes.
The so-called visualisation cases are chosen due to the presence of shock waves, which are
particularly challenging for the surrogate models.

It has to be noted that the optimisation of the aerodynamic shape based on the proposed
geometric features is considerably affected by the flight condition under consideration. From a
qualitative analysis of the CFD data, it is already possible to assess that the tuple (M,α) drives
the pressure distribution over the wing surface, with smaller effects coming from the geometric
variations, as later discussed. The pressures on the upper surface have drastic changes due to
shock wave patterns as M increases, imposing a challenge for the surrogate model due to the
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high nonlinear dependencies of the dataset.

2.2 Manifold Learning via Isomap

Isometric feature Mapping (Isomap) is a manifold learner with nonlinear features. The purpose
of this investigation is to employ Isomap for embedding CFD data into a low-dimensional space
[11]. This encoding procedure is entirely data-driven, and its objective is to unveil a latent
low-dimensional space that facilitates the correlation of the new coordinates with the main
features of the data. In prior studies [15, 17], Isomap has been utilised in surrogate models to
carry out regression within the low-dimensional subspace, outperforming other linear techniques
such as POD.

Consider N data samples in the high-dimensional space RP . Let X ∈ RP×N be the data
matrix containing the high-dimensional data and xi ∈ RP be each of its rows, for i = 1, . . . , N.
The dataset in X is in our case characterised by the presence of shock waves, and being able
to extract a meaningful small number of coordinates that captures the main characteristics of
the flow is challenging. Isomap computes the low-dimensional embedding of the data points
that best preserve the geodesic distances measured in the high-dimensional input space. This
algorithm first relies on a conventional k-nearest neighbour (kNN) search to compute the matrix
of Euclidean distances dX(i, j) between data points xi and xj for all i, j = 1, . . . , N to identify
the k closest observations to xi. Then the neighbouring graph G over these data points is
computed such that two nodes i and j are connected by an edge of weight dX(i, j) if they
are neighbours. Given the pairs of vertices within G, Floyd’s algorithm [25] is invoked to
calculate the shortest paths between them, creating the matrix DG. Finally, the low-dimensional
embedding is obtained Γ ∈ RN×p, p << P , using a classical Multi-Dimensional Scaling (MDS)
[10] on the matrix of shortest path distances DG, so that the Euclidean pairwise distances
resemble those in the neighbouring graph dG(i, j).

From Cp to the manifold: Isomap encoder

The CFD data is provided in the form of N data vectors, containing the pressure coefficient
on the wing surface, being N the number of cases within the training set. Each Cp distribution
is an observation (point) in the high-dimensional space RP , being P the number of gridpoints.
The definition of the number of neighbours k to compute the matrix G, and the dimension of the
embedding p are selected based on the residual variance (RV ) [11]. This metric is the ratio of
the residual sum of squares to the total sum of squares based on the matrix of Euclidean distances
between each pair of points in the low-dimensional embedding DΓ and the shortest distance
matrix DG. Since the value of RV quantifies the information that remains unexplained by the
low-dimensional embedding of the original data, the objective is to minimise it for a given p
and k. Whereas the appropriate p mainly depends on the data and its features, the choice of k
must guarantee the preservation of the structure and convexity of the manifold. The approach by
Samko et al. [26] was followed to define a valid range of exploration for k, and the dimension of
the embedding is explored in the range p ∈ [2, 5] based on the RV value.

In a preliminary analysis, it was decided to fix the number of Isomap coordinates to the
number of design features used to build the database, which includes the flight condition and
the geometric variations (p = 5). The correlation heatmap between the high-dimensional
features and the Isomap coordinates is included in table 2. Additionally, the relevance of the
high-dimensional features and the Isomap coordinates on the CFD data is assessed by computing
the correlation for the average and root mean square of the pressure coefficient (Cp and Cprms ,
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M α ∆Λ t/t0 b/b0 Cp Cprms

γ1 -0.75 -0.38 0.11 -0.09 -0.17 0.69 -0.21
γ2 -0.01 0.60 0.04 -0.04 -0.11 -0.50 0.77
γ3 0.13 0.29 -0.03 0.01 -0.01 -0.29 0.22
γ4 -0.13 0.22 0.02 -0.02 0.00 -0.17 0.26
γ5 -0.06 -0.23 -0.09 0.07 0.28 0.12 0.00
Cp -0.33 -0.92 0.07 -0.08 -0.08

Cprms -0.12 0.93 -0.02 0.02 0.03

Table 2: Correlation heatmap between aerodynamic and geometric features, and the isomap variables.

respectively). Based on the correlation heatmap, it is observed that the main feature affecting the
pressure coefficient is α, followed by M . The correlation with the geometric-variation features
is very low, showing a minor relevance. Interestingly, the first and second Isomap coordinates,
γ1, γ2 ∈ Γ, show a strong relationship with M and α, respectively, being also the most related to
Cp.

The conclusions from the correlation heatmap could be directly related to the geometric
alterations and their effect on the effective Mach number and angle of attack. The modification of
the sweep angle, thickness ratio and span ratio led to effects similar to a modification of the local
flight condition (M,α). For instance, the increase of the sweep angle (∆Λ > 0) has the effect of
reducing the local M , leading to a positive correlation with γ1, differently for M which has a
negative correlation with γ1. Similarly, thickening the wing (t/t0 > 1) leads to an increase of the
suction peak, promoting stronger shock waves for transonic flight conditions, which explains the
weak negative correlation with γ1. On the other side, elongating the wing (b/b0 > 1) reduces the
induced angle of attack and the parasite drag, in agreement with a negative correlation with γ2,
contrarily to α which has a positive correlation with γ2. Additionally, increasing b also augments
compressibility effects, due to a decrease in the sweep nearby the tip of the wing, as shown in
figure 1.

Based on the previous analysis, it seems that the Isomap embedding gathers the majority of
the contribution from the five design features into two variables. Hence, the selection of p = 2 is
a compromise of minimising the residual variance while keeping the least amount of dimensions
in the embedding. The representation of the pressure coefficient Cp in the low-dimensional
embedding is depicted in figure 2 for three different sets of data: the full database, 70% of the
database, and 30% of the database (the latest case being the one used for performance estimation
in the remainder of the paper). The representation of the data in the bi-dimensional embedding
depicts a topologically closed surface with a strong relationship with the problem features as
already evident in table 2. The colour scale in the figure shows the distribution of the data for
different M , illustrating a strong correlation with γ1. Similarly, the size of the symbols in figure 2
illustrates the value of the angle of attack, which grows in a pseudo-radial direction within the
(γ1, γ2) plane. It is to be noted that the shape and size of the manifold are not altered by reducing
the amount of data under consideration, meaning that Isomap captures the intrinsic features of
the Cp distributions with few samples. The manifold in figure 2c depicts the low-dimensional
representation of the training set that will be used to develop the surrogate models.

From the manifold to Cp: k-NN decoder

The Isomap algorithm identifies an appropriate mapping function that projects high-dimensional
data onto a low-dimensional embedding for a fixed and finite set of provided data samples. How-
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(a) (b) (c)

Figure 2: Isomap embedding. Representation of the pressure coefficient Cp in the low-dimensional (R2) embedding
computed with Isomap for three subsets of the database: (a) Full database; (b) 70% of the database; (c) 30% of the
database. In (a), the directions for the growing angle of attack ( ) and Mach number ( ) are highlighted. The
colour scale represents the Mach number while the symbol size represents the attack angle.

ever, this method does not furnish a decoding mechanism for the approximated reduced-order
solution. Consequently, a backmapping procedure from the embedding to the high-dimensional
solution space is necessary. The idea for the backmapping is based on LLE [9] and its different
versions within the literature [15, 14, 27].

Suppose that yi = [γ1, . . . , γp] ∈ Rp is the low-dimensional counterpart of the Cp snapshots,
i.e. xi ∈ RP . For an arbitrary point y, let Y = [y1, . . . ,yκ] denote the κ nearest neighbours
within the embedding space, which correspond isometrically to the nearest neighbours X =
[x1, . . . ,xκ] on the high-dimensional space given the geometry preservation feature granted by
the Isomap algorithm. A purely data-driven approach, based on the combination of the κ nearest
neighbours, is proposed so that f : Rp −→ RP is defined as the unknown backmapping function.
The high-order reconstruction x is derived as a first-order Taylor expansion starting from the
nearest neighbour to be mapped back to the original space, x = x1+(y−y1)∇f(y1)

⊤ [14]. The
gradient tensor ∇f(y1) is estimated assuming an orthogonal projection of the κ− 1 directions
provided by the κ−Nearest Neighbors in RP to those in Rp, namely

∆X =

x2 − x1

. . .
xκ − x1

 ≃

y2 − y1

. . .
yκ − y1

∇f (y1)
⊤ = ∆Y∇f (y1)

⊤ (1)

Using the least squares minimisation, the gradient tensor is approximated as

∇f (y1)
⊤ =

(
∆Y⊤∆Y

)−1
∆Y⊤∆X . (2)

The performance of the backmapping function f : Rp −→ RP is affected by an appropriate
determination of the number of κ neighbours used to compute the gradient tensor. This decision
is based on the distribution of the data within the embedding and the number of Isomap variables
under consideration. For this study, good performance of the backmapping is achieved for κ = 5.

2.3 Nonlinear regression with deep neural networks

The core of the surrogate model is the regressor, which serves the purpose of predicting
data for conditions outside of the training set. In this study, DNNs are proposed to exploit
their capability of universal approximators to establish the nonlinear relation between design
parameters and pressure distributions.

The study aims to compare the performance of a direct-DNN regression model to an
Isomap+DNN surrogate. Hence, two different DNNs are constructed to cope with both ap-
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Aerodynamic and Geometrical features Direct Interpolation Isomap Interpolation

M α Λ− Λ0 t/t0 b/b0 R2 MSE (×102) R2 MSE (×102)

Average on test dataset 0.974 1.236 0.949 2.329

0.70 4 0 0.9 0.9 0.926 2.622 0.974 0.936
0.74 8 -5 0.9 1.1 0.975 0.733 0.974 0.756
0.80 5 5 1.1 1.2 0.979 2.123 0.990 1.036
0.82 3 -5 1.1 1.1 0.961 2.164 0.972 1.530

Table 3: Performance metrics of the surrogate model: the correlation coefficient R2 and the Mean Square Error
MSE. Results are provided for the selected cases and the average of the testing set.

proaches. The chosen DNN architecture for both cases is a multilayer perceptron (MLP) made
up of different linear layers with the ReLU activation function. The number of coefficients
defining the MLP is kept similar for the two models to perform a fair comparison. In both
cases, the input layer is defined by 5 neurons, one for each of the design features, including
the flight condition and the geometric variations (M,α,∆Λ, t/t0, b/b0). Regarding the output
layer, the direct-DNN model provides the vector for the pressure distribution with a size equal
to the number of gridpoints, whereas the Isomap+DNN model predicts the low-dimensional
representation, i.e. a vector containing (γ1, γ2). For the former, the MLP is made out of 3
hidden layers that progressively grow by a factor of 24 with respect to the previous, leading to
an architecture of [5, 32, 256, 2048, 6519]. For the latter, the architecture features an expansion
followed by compression with a similar rationale to the previous, yielding an architecture of
[5, 32, 256, 2048, 256, 32, 2].

Despite the apparent simplicity of the MLP architecture, it was tested to perform at least
as well as for deeper configurations with more hidden layers and a less-abrupt increment in
the number of neurons per layer. Additionally, a dropout operator with a 25% probability is
included after the largest hidden layer in both cases to avoid overfitting. Regarding the loss
function, the classical Mean Squared Error (MSE) is chosen. Finally, the optimiser is set to
be the Adam Optimiser [28], a stochastic gradient descent method that is based on adaptive
estimation of first-order and second-order moments. In each epoch, the loss is computed and a
gradient descent optimisation is computed aiming at minimising it. Both models converged in
less than 104 epochs without exhibiting a divergence between training and testing loss values.

3 PREDICTION OF Cp FOR NEW DESIGN CONDITIONS

The proposed surrogate models are evaluated in this section. First, the performance of the
DNN for the Isomap+DNN model is evaluated, assessing its prediction in the low-dimensional
embedding. Then, the direct-DNN and Isomap+DNN models are compared in terms of prediction
accuracy of the pressure coefficient distribution for configurations outside of the training set. For
the comparison, the results are depicted for the visualisation cases described in §2.1, which are
summarised in table 3 together with the metrics for each case and the average values for the test
set. For now on, those variables with a tilde symbol on top (̃·) refer to predictions.

Prediction in the low-dimensional embedding

The performance of the MLP regressor used in the Isomap+DNN model is evaluated. The
prediction of each point within the test dataset is depicted in figure 3. The MLP regressor keeps
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Figure 3: Prediction of the DNN in the low-dimensional embedding. The colour scale represents the displacement
error of the prediction ||γ − γ̃||, being || · || the Frobenius norm operator. The displacement from the real value ( )
to the prediction by the DNN is shown for the 50 cases with the highest error.

the shape, distribution and size of the manifold. All mapped vectors fall inside the manifold
surface. The colour scale refers to the distance between prediction γ̃ and the real low-dimensional
representation of the case under evaluation γ, computed with the Frobenius norm, i.e. ||γ̃ − γ||.
The displacement vector (γ̃ − γ) is only shown for the 50 cases with the highest errors for the
sake of simplicity.

The predicted test cases preserve in the embedding the stratified arrangement of data, in
which each layer correspond to an angle of attack. Interestingly, only a few cases seem to be
misallocated in the wrong layer, as is the case for low M and low α. Consequently, the cases
with the greatest errors are mostly displaced along the constant-α layers, which implies that the
error is prevalently related to the effect of M on the Cp. The wider picture of the error map
within the embedding in figure 3 confirms that the MLP regressor performs reasonably well for
all the regions within the manifold. It has to be noted that the displacement of the prediction is
less than 5% of the manifold span for the worst cases, which can be considered an acceptable
prediction error.

The comparison of direct-DNN and Isomap+DNN surrogates in estimating the pressure
coefficient distributions is illustrated for the visualisation cases in figure 4 and figure 5. These
results evaluate the performance of the MLP regressor for the direct-DNN alternative, and the
performance of the combined MLP regressor and kNN backmapping for the Isomap+DNN
approach. In figure 4, the data is presented in the form of chordwise Cp distributions for three
arbitrary locations along the wing span, η = [0.1, 0.5, 0.9] being η the spanwise coordinate
normalised with the wing span b. On the other hand, the prediction error ∆Cp = Cp − C̃p is
depicted in figure 5 for the upper wing surface together with the regression plot.

Focusing on Case 1, it is already possible to assess the main weaknesses and strengths of
the proposed methods. This case corresponds to a flight condition with a low Mach number
and medium-high angle of attack (M,α) = (0.7, 4◦). In such conditions, there is no shock
wave on the upper surface of the wing, being the suction peak at the leading edge the main
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Figure 4: Cp chordwise profiles for CFD simulation( ), direct DNN regression( ) and Isomap+DNN regression
( ). Profiles are shown for the visualisation cases at three locations along the wing span.

challenge for the surrogate model as shown in figure 5. Indeed, both models perform reasonably
well for η = 0.1, in which the peak is mild at the root of the wing. However, the suction peak
becomes more abrupt in the mid-span section and close to the tip, becoming hard to predict for
the direct-DNN approach (see figure 4). Despite the nonlinear nature of the DNN, the direct
regression jeopardises the prediction performance of the model in the presence of drastic changes
of Cp. On the other hand, the Isomap+DNN model outstands in this matter. The former approach
filters out the information within the Cp distribution since the prediction C̃p is derived from
scratch by the DNN. Conversely, regardless of the regression performance in the low-dimensional
embedding, the prediction by the Isomap+DNN model is achieved after the combination of
existing data samples through the backmapping function, which gives more guarantees that the
physical behaviour is preserved when interpolating.

The aforementioned attributes for each model are also present for Cases 2 - 4, in which the
suction peak becomes irrelevant compared to the presence of a shock wave close to the trailing
edge as illustrated in figure 5. We observe that the overall performance of Isomap+DNN in
identifying the shock wave, its positions, and following the Cp through it is remarkably better
than for the direct-DNN approach based on the Cp profiles in figure 4.

Despite the good performance of Isomap+DNN on the identification of abrupt alterations
in Cp, its overall regression capabilities are slightly lower than for the direct-DNN approach,
as extracted from the global metrics in table 3. The proposed Isomap+DNN model is a good
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Figure 5: Comparison of direct-DNN and Isomap+DNN regression models for the selected cases. (Left column)
regression plot for direct DNN ( ) and Isomap+DNN ( ) regression. Deviation of the prediction with respect to the
simulation data for direct DNN (mid column) and Isomap+DNN (right column) regression.

alternative to retain complex physics within the data, however, the simplicity of the regression
model in the low-dimensional embedding prevents the model to perform as desired when the Cp

distribution is smooth. For all the visualisation cases, direct-DNN prediction better attach to the
CFD data everywhere else but the shock wave region. As an example, the metrics for Case 2 in
table 3 conclude a slightly better performance of the direct-DNN approach even though there
are strong deviations in the vicinity of the shock wave as demonstrated by the Cp distribution
over the upper surface in figure 5. Similarly, Case 3 and Case 4 appear to provide better metrics
for the Isomap+DNN although the prediction far from the shock wave is underestimated in both
cases as shown in figure 5. Consequently, and considering that many cases in the test set do not
exhibit such abrupt phenomena, the overall performance of the direct-DNN tends to be superior,
while Isomap+DNN is generally better in the detection and interpolation of highly nonlinear
phenomena.

As a final note, an assessment of the computational demands of each model is necessary.
Isomap, which serves as a dimensionality reduction algorithm, effectively accomplishes its
objective of simplifying the problem from a data management perspective. This is evidenced
by the size of the Isomap+DNN model relative to the direct interpolation models described in
the previous section. Isomap decreases the size of the output data array from the regression
model from 6519 elements composing the Cp distribution to a mere p = 2 elements, resulting
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in a reduction factor of roughly 3000. This reduction has a discernible effect on the size of the
regression models as well as on the computational costs of training and prediction. These results
are highly desirable for surrogate-based optimisation, where the surrogate model is incrementally
refined as new information becomes available.

4 CONCLUSIONS

The development of surrogate models in the low-data limit for the prediction of pressure-
coefficient distribution on transonic wings is investigated. The proposed surrogate combines
a reduction-dimensionality and a nonlinear regressor to develop a robust and affordable yet
performing predictive tool for its implementation in the preliminary design phase of multidis-
ciplinary design and optimisation processes. The test case is the wing of the XRF1 model
simulated for different flight conditions and geometries. The resultant database contains Cp

data from CFD simulations based on the Mach number, angle of attack, sweep angle, thickness
and span as design parameters. We propose a surrogate model referred to as Isomap+DNN
combining a manifold learner based on Isomap to reduce the dimensionality of the Cp data
with a multilayer-perceptron regressor that maps the design parameters to the manifold space.
Additionally, we use a backmapping based on k-nearest neighbours to reconstruct the Cp from
the low dimensional data.

The Isomap embedding exhibits a strong relation with M and α. The surface of the manifold
is stratified with each layer corresponding to a specific α. The effect of the geometric variations
is ingrained in the embedding as a modification of the local flight condition. The MLP regressor
performs reasonably well when predicting the low-dimensional representation of Cp in the
manifold space. The displacement error of the prediction does not show a clear trend based on
the design parameters, with less than 5% error compared to the manifold size.

The prediction of Cp is very robust for both direct-DNN and Isomap+DNN surrogates, with
slight superiority of the direct approach from a global perspective. However, the Isomap+DNN
model is superior in identifying compressibility effects, such as shock waves or strong suction
peaks. Despite the nonlinear nature of the DNN, the performance of direct-DNN is compromised
in the presence of significant changes in the Cp distribution. This approach filters out the
information contained within the Cp distribution since the prediction is obtained solely from
the DNN based on the input parameters. In contrast, the Isomap+DNN model’s prediction is
achieved by combining existing data samples through the backmapping function, providing
greater assurance that the physical nature is maintained during interpolation. Despite the
regression performance in the low-dimensional embedding, the Isomap+DNN model is more
reliable than the direct-DNN approach.

The Isomap+DNN model has demonstrated superior performance in predicting configurations
with stronger compressibility effects, thereby creating an opportunity to develop robust and cost-
effective surrogate models for predicting aerodynamic data on transonic wings. This approach
significantly outperforms the direct-DNN method in identifying the shock wave and its positions
and tracking the Cp through it. It is envisioned that combining both techniques could produce
a synergistic surrogate model with strengths in both predicting the overall Cp distribution and
identifying abrupt phenomena resulting from compressibility effects.
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CODE AVAILABILITY

The Python library used in this research for the Isomap+DNN regression model is publicly
published: https://github.com/TACOMA-INTA/tacoma-lib.
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Abstract. In aircraft aerodynamic design, it is common to have data from computational
fluid dynamics simulations and wind-tunnel tests that provide datasets with different levels of
fidelity. It is desirable to combine the strengths of both sources of information to generate
models as close as possible to reality. In this paper, two multi-fidelity methods will be combined
to model the pressure coefficient over a wing section in the transonic regime, namely Bayesian
Gappy POD (BGPOD) and Multi-fidelity Gaussian Process Regression (MFGPR). Without the
need for new datasets, the combined model improves the performance compared to the use of
BGPOD in terms of both accuracy and uncertainty.

73



J. Nieto-Centenero, R. Castellanos, A. Gorgues and E. Andrés

1 INTRODUCTION

Data from different sources is used to study aircraft aerodynamics. The three main sources
of aerodynamic data are the following: Computational Fluid Mechanics (CFD), Wind Tunnel
Test (WTT), and Flight Test Data [1]. Although all of these sources provide information on the
same aircraft, their characteristics are different, including accuracy in showing the aerodynamic
reality of the aircraft. Flight test data is considered to be the most representative reflection of
real-world conditions, but it is usually limited in scope due to its high cost and safety issues.
Moreover, these tests are performed in the final design phase of the aircraft, therefore, the data
would not be useful for a preliminary design phase, although it would be useful for later analysis
such as aircraft performance analysis. CFD simulations can be performed from very early design
stages and may have different levels of accuracy depending on the used formulation. However,
even with the advances in computing capacity of the last decades and those expected in the
near future, it is not possible to perform a direct simulation of the Navier-Stokes Equations
(DNS) at the industrial level, so the physics of the problem has to be simplified. Such model
simplifications, combined with discretization errors and the complexity of simulating near flight
envelope boundary conditions, resulting in limited accuracy [2]. Additionally, more accurate
models lead to a higher computational cost, so a trade-off is necessary between the simulation’s
accuracy and the number of flight conditions to be studied to fit the available computational
power. Finally, the accuracy of WTT data is intermediate between the CFD and the flight test
data.

Aerodynamic data do not only differ in their accuracy to show reality, one of their most
significant differences is the amount and dispersion of the available data. CFD gives a complete
distribution of local pressure over the entire surface under study, while WTT has several local
pressure measurements limited to the number of sensors on the surface [2], and flight tests have
an even more limited number of measurements than WTT.

The combination of data from different acquisition methods and accuracy levels is achieved
through multi-fidelity or Data Fusion method. The basic idea behind these techniques is to
fuse data from different fidelities, which usually, as they increase in accuracy, decrease in the
amount of available data [3], to generate a model as close as possible to the highest-fidelity data
but with higher resolution. Within the field of aerodynamics, the most widespread Data-Fusion
models are the Gappy Proper Orthogonal Decomposition (GPOD) and models based on Gaussian
process regression (GPR). The principle behind the GPOD technique is to combine the Proper
Orthogonal Decomposition (POD) modes with a least-squares problem to reconstruct a vector
of incomplete data. The first use of GPOD was the reconstruction of human faces [4]. Two
ways of using this technique are shown in this paper: the first consists of generating POD modes
from a complete database and then reconstructing faces with sparse data from these modes; the
second way is to reconstruct POD modes from a database in which all photos have randomly
missing data. This method, with its two variants, was used in [5] to reconstruct the fluid field
around a NACA0012 airfoil. It was also employed for the fusion of CFD and WTT data in
[3], introducing a regularization of the least squares problem and a constrained method using
aerodynamic forces. In [6], an extension of the constrained GPOD is presented, and the results
are compared with a Bayesian-Data-Fusion framework. In [7] a Bayesian extension of this
method is presented, in which the least-squares problem is solved by applying a Gaussian process
regression, allowing the estimation of the degree of confidence in the regression. A variation
of Gaussian process regression, known as Hierarchical Kriging, Cocriking or Multi-fidelity
Gaussian process regression (MFGPR), is a popular modification of this method for Data-Fusion
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applications. The method involves building a Gaussian process regression model for each level
of fidelity. These regression models are then combined using a Bayesian framework to obtain a
more accurate estimate of the output. The combination is done by assuming that the difference
between the outputs of two adjacent levels of fidelity can be modeled as a Gaussian process
with a certain covariance structure. This hypothesis allows the model to learn how to transfer
information from one level of fidelity to another, and to propagate uncertainties from one level to
the next. An application of cokriging to generate surrogate models for aerodynamic magnitudes
by fusing data from different fidelities can be found in [8, 9, 10, 11]. It is also possible to fuse
data from non-hierarchical sources of information, where each source of information receives a
degree of confidence from experts in the problem or empirical data. In [12, 13] non-Hierarchical
Kriging is implemented in aerodynamic applications.

This paper presents a data-fusion model that takes advantage of the strengths of BGPOD
and MFGPR to predict pressure coefficients (Cp) on a wing section operating in the transonic
regime. By incorporating MFGPR, the model is able to reduce the error in the Cp prediction and
simultaneously narrow the confidence interval. This improvement in accuracy is accomplished
without the need of providing supplementary databases.

2 METHODOLOGY

In this section, the database and methodology used are presented. First, a description of the
aerodynamic database is provided 2.1. A mathematical introduction of the employed methods
follows. Gappy POD is described in 2.2, followed by a description of Gaussian process regression
in 2.3 and how it relates to Gappy POD. Finally, a brief review of Multi-fidelity Gaussian process
regression and its use for the study case is presented in 2.4.

2.1 Database

A database of CFD simulations and WTT of the wing of the XRF1 research aircraft is used.
The XRF1 [14] is a research aircraft model provided by Airbus, which is representative of
a long-range wide-body aircraft. The work presented here has been carried out within the
framework of the Group for Aeronautical Research and Technology in Europe (GARTEUR) for
the AD/AG60 [15] research project. CFD was performed by means of Reynolds Average Navier-
Stokes (RANS) simulations, made with the TAU solver [16]. The entire aircraft was considered,
so the aerodynamics interactions between different subsystems of the aircraft exposed to the air
stream were captured. WTT were performed at the European Transonic Wind Tunnel (ETW)
facility, and surface pressure data was acquired using pressure taps located in 26 spanwise
locations along the wing span, η. The Reynolds for both CFD simulations and WTT was set to
Re = 25× 106.

The test case presented in this study employs a subset of the above-mentioned database.
One of the airfoils was isolated sufficiently far from the wing pods, located at η = 0.75, to
avoid significant aerodynamic interference. This subset contains a significant population of
high-fidelity data collected in the WTT. The data within the selected section consist of 199
(Cp) values obtained from CFD simulations and 59 Cp values obtained from pressure taps. The
WTT dataset is then subdivided into training (86.5%) and test (13.5%) sets, the latter being
approximately distributed at 20, 40 and 60% of the airfoil chord.

Finally, the CFD simulation database is made up of a total number of 89 flight conditions with
Mach numbers M ∈ [0.82, 0.96] and angles of attack α ∈ [−7.5◦, 8◦] and the WTT database is
composed by a total number of 114 flight conditions with Mach numbers M ∈ [0.8, 0.96] and
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angles of attack α ∈ [−8◦, 7.5◦], as shown in the Figure 1.

(a) CFD grid points (blue) and pressure taps (red)

0.80 0.82 0.84 0.86 0.88 0.90 0.92 0.94 0.96
M
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6

4

2

0

2

4

6

8 CFD
WTT

(b) Flight conditions

Figure 1: Subfigure (a) shows the distribution of CFD grid points and the pressure taps of the
WTT. The selected section for this work is also indicated. Subfigure (b) shows the distribution
of flight conditions for CFD simulations and WTT, in terms of Mach number (M ) and angle of
attack (α).

2.2 Gappy POD

POD is a data-driven method that aims to find an approximation of the input data in a low-
dimensional space, preserving the essential information of the high-dimensional dataset [17].
For this particular case, the high-dimensional dataset is composed of the vector Cp obtained by
CFD simulations, yi ∈ RP which is stored in the snapshot matrix Y ∈ RP×N , where P denote
the number of grid points and N are the number of flight conditions that are being using as
pseudo-time [18]. Singular Value Decomposition (SVD) is applied to the snapshot matrix Y to
obtain the matrix decomposition that follows,

Y = UΣV∗ =
d∑

i=1

σiuiv
∗
i , (1)

where U = [u1,u2, . . . ,ud] ∈ RP×d and V = [v1,v2, . . . ,vd] ∈ RN×d are orthogonal semi-
unitary matrices such that U∗U = V∗V = Id, and Σ = diag(σ1, σ2, . . . , σd) ∈ Rd×d and
σ1 ≥ σ2 ≥ . . . ≥ σd > 0. For the database proposed in this study, d coincides with the number
of simulated flight conditions N , which is the dimension of the low-dimensional basis given by
U. The truncation of the number of modes is also possible by choosing a reduced rank d∗ < d
so that only the d∗ most energetic modes are conserved upon reconstruction.
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The low-rank approximation provided by POD allows reconstructing the solution u ∈ RP with
r measurements of the P−dimensional state [19]. For this particular case, the r measurements
are the Cp of the pressure sensors recordings from the WTT, with r << P . This sparse vector
can be represented by the variable ũ, being it defined as,

ũ = PTu , (2)

where P ∈ RP×r is a mask that takes the unity value at locations where there is a sensor and
zero elsewhere. This sparse vector can then be approximated with the standard POD projection:

ũ ≈ PT

d∑
k=1

ãkψk = PTUdã , (3)

where Ud ∈ RP×d is the left-mode matrix of SVD decomposition and ã ∈ Rd is the vector
of coefficients that minimizes the error in the approximation ∥ũ − PTu∥ in the L2 sense. If
X = PTUd ∈ Rr×d has a full column rank, then this minimization has as its solution the
ordinary least-squares estimator,

ã = (XTX )−1XTũ . (4)

The problem of a near-singular moment matrix on (XTX ) could be alleviated by adding a
small positive constant λ to the diagonal before taking the inverse. Applying this modification to
equation (4), the ridge estimator is obtained,

ã = (XTX + λI)−1XTũ . (5)

With the coefficient vector ã determined, the reconstructed vector u can be obtained by
applying equation (6),

u ≈ Udã . (6)

2.3 Gaussian process regression

An overview of Gaussian process regression theory is herein presented. For a detailed analysis
of the outlined mathematics, the interested readers are encouraged to consult [20, 21, 22].

A Gaussian process is a collection of random variables, any finite number of which have joint
Gaussian distributions. A Gaussian process is specified by its mean function, m(x) = E[f(x)],
and covariance function, k(x,x′) = E[(f(x)−m(x))(f(x′)−m(x′))] , then we can write the
Gaussian process as f(x) ∼ GP(m(x), k(x,x′)). Although it is not required, the mean function
usually takes a zero value to simplify the notation. Each element of the training dataset, y,
is a sample with Gaussian distribution, representing the true value of the observation, f(x),
affected by some independent Gaussian noise, ϵ, with variance, σn. Thus, the observations can
be interpreted as y = f(x) + ϵ. The objective of the regression is to predict f∗ values at new
points x∗. The joint distribution of the training values and the function at new points is[

y
f∗

]
∼ N

(
0,
[
K(X,X) + σ2

nI K (X,X∗)
K (X∗,X) K (X∗,X∗)

])
, (7)

where X = [x1, . . . ,xn] are the observed datapoints, X∗ = [x1∗, . . . ,xn∗] are the new points
where to make predictions, and K are matrices constructed using any function k(x,x′) that
can perform as a covariance function, that is, any function that takes two arguments, such that
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k(x,x′) generates a non-negative definitive covariance matrix K. These functions are known as
kernel functions.

By deriving the conditional distribution, we arrive at the predictive equations for the Gaussian
process regression as f̄∗|X,y,X∗ ∼ N (̄f∗, cov(f∗)) where

f∗ = K (X∗,X)
[
K(X,X) + σ2

nI
]−1

y , (8)

cov(f∗) = K (X∗,X∗)−K (X∗,X)
[
K(X,X) + σ2

nI
]−1

K (X,X∗) . (9)

The method used for learning the noise variance and, if there were, the kernel hyperparameters,
is the maximization of the log marginal likelihood given by

log p(y|X) = −1

2
yT[K(X,X) + σ2I]−1y − 1

2
log |K(X,X) + σ2I| − n

2
log (2π) . (10)

In [7] the Bayesian Gappy POD (BGPOD) extension is presented. This method uses Gaussian
process regression to estimate the coefficients ã of the Gappy POD method and then obtain a
predictive distribution for all rows of the left-mode POD matrix. That extension is used in this
study; however, the kernel function proposed here is different from the one used in the mentioned
paper. The mean equation (8) is reminiscent of the Ridge estimator, equation (5). In fact, the
mean of a GPR is equal to that given by the ridge regression, if the kernel function is the dot
product kernel, k (x,x′) = σ2

0 + x · x′, with σ2
0 = 0, also called the homogeneous linear kernel.

This kernel function is used in this study to have a direct relationship between the regularized
GPOD and the BGPOD, but in the latter case providing the confidence intervals in the regression.
In addition, the homogeneous linear kernel is useful if the original features are individually
informative, so the decision boundary is likely to be representable as a linear combination of the
original features [23], as is the case for POD modes. Figure 2 depicts a comparison between
solving the GPOD using a GPR with the dot product kernel or the Ridge estimator.
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BGPOD mean value
BGPOD 95% confidence interval
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Figure 2: Comparison between BGPOD and GPOD solved with the Ridge estimator.
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2.4 Multi-fidelity Gaussian process regression

Gaussian process regression can be extended to construct probabilistic models that allows
the combination of variable fidelity information sources [24, 25, 26]. If there are s levels
of information that produce an output yt(xt). These data can be organized with increasing
fidelity as Dt = {xt,yt}, t = 1, ..., s. Assuming the Markov property introduced in [24],
Cov(ft(x), ft−1(x

′)|ft−1(x)) = 0, ∀x ̸= x′, that means no further information can be acquired
about ft(x) from lower fidelities ft−1(x

′) for x′ ̸= x, we lead to the autoregressive model,

ft(x) = ρtft−1(x) + δt(x) , (11)

where δt(x) is a Gaussian process independent of ft−1(x), . . . , f0(x) with mean µδt and covari-
ance function kδt , and ρt represents a scale factor between ft(x) and ft−1(x).

A numerically efficient recursive inference scheme can be constructed by adopting the
derivation proposed by Le Gratiet & Garnier [25]. With this scheme, the inference problem
is essentially decoupled into s standar GPR problems, yielding the multi-fidelity posterior
distribution f̄t|yt,Xt, f∗t−1 , t = 1, . . . , s, with predictive mean and variance at each level given
by

f̄∗t = ρtf̄∗t−1 + µδt +K (X∗,Xt)
[
K(Xt,Xt) + σ2

ntI
]−1 [

yt − ρtf̄∗t−1 − µδt

]
, (12)

cov(f∗t) = ρ2t cov(f∗t−1) +K (X∗,X∗)−K (X∗,Xt)
[
K(Xt,Xt) + σ2

ntI
]−1

K (Xt,X∗) .
(13)

The kernel used for high and low fidelity databases is the Radial Basis Fuction (RBF), which
is the most widely used kernel [27], and reads as follows

k (x,x′) = σ2
k exp

(
−(x− x′)2

2l2

)
, (14)

where σ2
k , l ∈ R are the free parameters of the kernel. The process followed to obtain the

hyperparameters of the models is the maximization of the log-likelihood [28]. Generally, the
log-likelihood is not convex. Therefore, an exploration is performed starting from different
initialization values. Once the exploration is done, we select the parameters from a minimum
that does not lead to an overfitted model.

3 RESULTS

Gappy POD and Multi-fidelity Gaussian process regression are the two most widely used
multi-fidelity models for aerodynamic applications. In this work, we intend to combine both
techniques. For this purpose, the autoregressive model in equation (11), with two fidelities is
used. The higher fidelity is the Cp data obtained in WTT. Furthermore, for this fidelity the noise
variance will be assumed to be zero, so an interpolation between the data would be performed.
The choice for the noise to be zero is given by the unknown measurement tolerance of the
pressure taps, which could be introduced directly if known and would lead to a model closer to
reality. Sometimes this error variance is taken as a hyperparameter in the optimization of the
GPR; however, this methodology requires several repetitions of the observation with the same
test conditions [2] in order to be feasible and provide valid results.

For low-fidelity data, the results obtained by applying the BGPOD on the database will be
used. However, the resultant Gaussian process is not fed directly into the multi-fidelity model.
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(a) M = 0.82 , α = −5◦
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Figure 3: Comparison of the pressure coefficient reconstruction achieved by Bayesian Gappy
POD (blue) and Multi-fidelity Gaussian process regression (red).

This is because the BGPOD regression is performed on the POD modes and not on the Cp data,
so this Gaussian process will not have a direct relationship with the high-fidelity data. The
solution proposed here is to use as low-fidelity data the mean Cp obtained from the BGPOD. In
addition, this method provided information about the variance of these values. It can be seen that
for our test case, the variance of the BGPOD result is practically constant throughout the whole
prediction. With this idea in mind, the variance of the noise for low-fidelity will be selected equal
to the mean of the predicted variances. In a case where the variance would be very different by
zones, the Heteroscedastic Gaussian process model could be used, where the observed noise can
have a different variance at each point [29]; nonetheless, this model is beyond the scope of this
study.

Figure 3 depicts the results for four flight conditions in the transonic regime. Figure 3a shows
the case M = 0.82, α = −5◦. As previously discussed, MFGPR intercepts all pressure tap
training points since it takes this data as ground truth. In this case, both methods are able to
follow the general trend of the Cp distribution. The variance of the multi-fidelity model is lower
than that of BGPOD, showing a clear difference between the behavior of the lower surface,
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where the variance narrows between the train data, and the upper surface, where the variance
grows considerably between these points. It should be noted that there is a Cp value of the
pressure taps testing subset that falls outside the confidence interval of the two models. Figure
3b shows the case M = 0.84, α = 2◦. The BGPOD underestimates the value of Cp in the
suction peak area, and slight oscillations occur downstream with lack of physical coherence.
With MFGPR these oscillations are notably increased, thus misrepresenting this region. The
shock wave is well characterized in both cases. Figure 3c shows the case M = 0.86, α = 6◦.
The MFGPR model is able to correctly follow the Cp trend, making an accurate prediction of the
test points, and smoothing the oscillations observed with the BGPOD model. However, it can
be observed that the MFGPR model is unable to capture the Cp at the attachment line. Finally,
Figure 3d shows the case M = 0.96, α = 0◦. In this case, it can be seen how the BGPOD cannot
accurately capture the shock wave present near the trailing edge of the upper surface. Moreover,
the uncertainty margin is much larger than for the cases shown earlier. The mean of the MFGPR
model is capable of accurately describing the aerodynamic characteristics of this case. It is also
observed that, while for the upper surface there are narrow confidence margins, for the lower
surface case the confidence margins between train points are high, and the mean of this model
follows the same trend as that of the BGPOD.

In light of the MFGPR results, it is possible to notice the complexity in the choice of
hyperparameters for each case, which, even following the same optimization method, lead to
results that differ notably in the distribution of the variance or the smoothness. Research of a
robust method to select the hyperparameter set is one of the major challenges within Gaussian
process regressors.

To observe the benefits of using a multi-fidelity model, a GPR of high-fidelity data has been
performed directly (HFGPR). Figure 4 shows the case M = 0.92, α = 4◦. It can be seen that the
95% confidence interval of the interpolation is very wide in areas where no train data is available
and how the predicted mean deviates significantly from the test data. Furthermore, the model
does not follow the flow trend at the leading and trailing edges due to insufficient information in
these regions.

Finally, a quantitative analysis of the errors in the test dataset is performed. For this purpose,
a comparison is made between three different models: the BGPOD, the MFGPR and the HFGPR,
evaluating the Root Mean Squared Error (RMSE), to evaluate the error of the test data with
respect to the GPR mean, and the Mean Log-Loss error (MLL), which not only takes into account
the distance between the test data and the prediction, but also the confidence intervals of the
prediction are considered. The lower the MLL, the better the model [20]. In Table 1 it can be
seen that the RMSE values by the HFGPR is significantly higher compared to the other two
methods, having also an elevated MLL, indicating a poor fit of the model to the test data. On
the other hand, the MFGPR has an RMSE 11% lower than that of the BGPOD and the MLL
demonstrates that it is a more suitable model for the data studied.

Table 1: Results of the performance metrics applied in the BGPOD, MFGPR and HFGPR study
models. The root mean square error, RMSE, and the mean log-loss, MLL, are applied on the test
points for all flight conditions.

BGPOD MFGPR HFGPR
RMSE 0.048 0.043 0.162
MLL -1.28 -1.42 4.750
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Figure 4: Comparison between MFGPR and HFGPR for the flight condition M = 0.92, α = 4◦.

4 CONCLUSIONS

This work explores the combination of Bayesian Gappy Proper Orthogonal Decomposition
(BGPOD) with Multi-fidelity Gaussian Process Regression (MFGPR) to develop a surrogate
model for predicting pressure coefficients over a wing section in the transonic regime. The
model fuses data derived from RANS simulations and pressure tap measurements obtained in
wind-tunnel experiments, both performed on the XRF1 research aircraft. The results obtained
with the proposed model show a reduction of 11% RMSE in test points with respect to the use
of BGPOD. MFGPR also decreases the uncertainty of the Cp forecast and provides the ability
to obtain the mean and variance of any desired point, not limiting the prediction to CFD grid
points, as is the case with BGPOD. Therefore, this improvement in regression has been achieved
without incorporating new training data.

Both the choice of the kernels and the hyperparameters tuning present a major problem that
requires an in-depth study since the model is strongly dependent on them. Finding a suitable
combination of these elements for the problem at hand could alleviate the slight oscillations that
appear in the Cp prediction and improve the overall accuracy of the model. It is also desirable to
incorporate the real uncertainty of the input data to obtain a model that is more faithful to the
nature of the data, which could be introduced directly into the developed model.
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Abstract. Useful parameterisations of shapes for engineering models often climb from many
tens to a few hundred design variables, potentially jeopardising usual optimisation techniques.
Surrogate models are intractable when parameter numbers exceed a few tens, and gradient de-
scent through adjoint computation in high-dimension is threatened by potential multimodality.
Dimension reduction addresses these problems nicely. This paper aims to improve upon the Ac-
tive Subspaces dimension reduction method by applying a combination of active subspaces in
subregions of the design space, where their use of the objective function’s gradients will exploit
useful local information to discover specific trends instead of trying to identify global trends
over an entire design space. The partitioning of the input space is done through Gaussian Mix-
ture Model clustering, where the authors assume the distribution of the joint inputs/outputs to
be a mixture of Gaussians. This GMM clustering is used to drive a Support Vector Machines
(SVM) based supervised classifier, which will enable the definition of the overlapping zones in
the input space. The use of overlapping increases prediction accuracy at the boundaries be-
tween clusters, an improvement over recombination methods typically found in the literature.
The local expert of choice is Kriging, in part due to its built-in variance prediction.
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1 INTRODUCTION

Aerodynamic shape optimisation plays a fundamental role in aircraft design. Modern
aerospace design relies heavily on computer simulations to circumvent expensive and time-
consuming physical experiments. Yet, as design complexity continues to increase, the com-
putational cost for these numerical simulations becomes uncomfortably high, even on large
scale computing clusters. The problem is exacerbated in cases where the simulation needs to
be queried multiple times. Optimisation is one of these cases, since minimising an objective
function with regards to input parameters requires repeated evaluations of successive designs.
Uncertainty quantification (UQ) is another, where simulations must be run repeatedly in order to
evaluate the influence of variability in the input parameters. In optimisation, we typically seek
to minimise a scalar quantity of interest (QoI) such as drag or lift-to-drag ratio for winged-typed
surfaces (under lift and/or moment constraints) or isentropic efficiency (under pressure ratio and
mass flow requirements) for engine components. However, useful parameterisations of shapes
for engineering models often result in high-dimensional design spaces (several tens to several
hundreds of design variables) which can create challenges for both local and global optimisers.
A workaround to successive evaluations is surrogate modelling. A statistical model of the func-
tion of interest is trained using an initial set of simulations. This initial investment is offset by
using the model in lieu of actual CFD computations in order to evaluate the performance of new
designs, since calls to the surrogate model are essentially free.

The considered functions of interest have been shown to be potentially multimodal, either
due to non-convexity of the QoI with respect to the parameter space [1], or poorly converged
gradient computation [2], and as dimensionality rises we expect function topology to keep
increasing in complexity. When facing tortuous, possibly multimodal functions, a common
practice is to cluster the design space, essentially splitting up the problem into several smaller,
simpler problems. This Divide and Conquer approach is beneficial in the case of surrogate mod-
elling, since each surrogate model is now tasked with approximating the function in a subregion
of the design space, where it is hoped the objective function has less complex local variations.

A major limitation of typical response surfaces such as Kriging is that they do not easily scale
to high dimensions. This problem, amongst others, can be addressed nicely through dimension
reduction. A technique for reducing the dimension of the parameter space has been proposed
by Constantine [3]. The idea consists in revealing a low-dimensional subspace that captures
the trends in the QoIs by leveraging gradient information, and then exploits these directions to
efficiently find an optimal design in the appropriate areas of the design space. This subspace is
called the Active Subspace (AS). The method is justified since many engineering QoIs exhibit
monotonic behaviour with respect to the input parameters. It is rooted in the same princi-
ples as well known Principal Component Analysis (PCA) or Proper Orthogonal Decomposition
(POD) methods but, unlike the two aforementioned methods who only discover correlation in
the input or output spaces, the use of gradient information enables the identification of rela-
tionships between the input and output spaces. When compared to the PLS method [4], the
Active Subspaces method benefits from the use of gradient information, as well as introduc-
ing a probabilistic framework which allows for built-in estimation of the quality of the spectral
information.

In this paper, we present a Clustered Active Subspaces strategy that combines a model-based
clustering using Gaussian mixture with local Active Subspace discovery. Kriging surrogate
models are then constructed in each of the reduced subspaces. These local experts are appro-
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priately recombined to obtain a scalable surrogate model for a high-dimensional design space.
Typically, in the case of highly complex topologies, a mixture of experts strategy is expected
to improve model accuracy. However, with the smooth recombination using a weighted sum
of neighbouring experts, this may not always be the case: early tests have shown the bulk of
the error being located at the cluster boundaries. We attribute this result to Kriging’s (and other
response surfaces) poor performance when extrapolating. We propose an original overlapping-
based approach to circumvent this difficulty, whereby the training sets of the response surfaces
are enhanced by including appropriate points from nearby clusters. In doing so, we create an
overlapped area around the cluster boundaries, where both experts are more likely to be accu-
rate since they have been trained on surrounding points. The use of gradient information is a
recurring theme in this work as we want to benefit from this additional information, since have
access to the adjoint solver embarked in the ONERA elsA CFD solver [5], which yields the
gradients at an affordable cost [6].

Figure 1: Clustered Active Subspaces Strategy

We demonstrate the efficiency of this approach on the Branin analytical function [7] and on
two existing datasets for the 2D NACA12 aerofoil and the 3D ONERA M6 wing [8]. These
datasets are available as part of Constantine’s Active Subspaces toolbox for Python.

The paper is structured as follows: we begin by explaining the strategy behind the Clustered
Active Subspaces method, before laying out the groundwork for Active Subspaces, Gaussian
Mixture Model clustering and Kriging. Section 3 explains the two improved recombination
strategies developed here, and section 4 presents the novel automatic dimension selection cri-
terion for AS. Section 5.1 introduces the two physics-based datasets used to test our method,
and section 5 provides a performance analysis for the CAS method on the aforementioned test
cases. We will close with a discussion of the results.

2 METHODOLOGY

We now present the building blocks of the Clustered Active Subspace method. A presenta-
tion of the method’s workflow is presented in section 2.4

2.1 Kriging

Kriging is a family of metamodels stemming from Gaussian Processes, benefiting from em-
bedded uncertainty modelling. Like other response surfaces, the objective is to learn the rela-
tionship between a numerical experiment’s inputs and outputs, in order to predict new values
without the need for new, expensive simulations.

The distribution of a Gaussian process is fully characterised by:

• its mean function µ defined over X ⊂ Rd

• its covariance function, kernel k (., .) , defined over X×X : k(x,x′) = cov (Y (x), Y (x′))

Note the input is the d dimensional vector x ∈ X . In this work, we consider without any loss
of generality the quantity of interest to be a scalar output function Y (x) ∈ R.
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The current statistical model can thus be expressed as follows:

Y (x) ∼ N
(
µ(x), k(x,x)

)
Y (x) = µ(x) + Z(x) µ is known (deterministic)
Z(x) ∼ N (0, k(x,x))

(1)

A valid kernel must be symmetric (k(u,u′) = k(u′,u)) and positive semi-definite (∀u ∈
RM ,uTKu ≥ 0,K = k(u,u),K ∈ RM×M ). Although many functions satisfy these crite-
ria, in this work we will use exclusively the squared exponential kernel, whose full expression
is given below.

k(x,x′) = σ2 exp

(
−1

2

d∑
i=1

(xi − x′
i)
2

θ2i

)
, k : (x,x′) → k(x,x′), Rd×d → R (2)

With Gaussian vector conditioning, we can write the joint distribution of the observed target
value and the function values at the test location x∗ under the prior:[

y
y∗

]
∼ N

(
0,

[
k(X,X) + σ2

nI k(X,x∗)
k(x∗,X) k(x∗,x∗)

])
, X ∈ RM×d (3)

from which we arrive at the predictive equations for regression Kriging:

µ̂(x∗) = µ+ k(x∗,X)
[
k(X,X) + σ2

nI
]−1

(y − µ) (4)

σ̂2(x∗) = σ̂2 − k(x∗,X) k(X,X)−1 k(x∗,X)T (5)

The Kriging hyperparameters are determined by maximizing the probability of the hyperpa-
rameters, given the observations. This can be done in of two ways, either through optimisation
of Maximum Likelihood function [9], or through Cross-Validation. In either case, as dimen-
sionality rises, complexity rises to the point where the numerical problem becomes intractable.
This is where dimension reduction comes into play.

2.2 The Active Subspace method

2.2.1 The basis behind the method

Accurate gradient information is available, so we use the Active Subspaces method proposed
by Constantine [3].

Consider a function f with m continuous inputs. The column vector x takes values in Rd;
we write x = [x1, . . . xd].

f = f(x), x ∈ X ⊆ Rd (6)

Let X be equipped with a bounded probability density function ρ : Rd → R+, where

ρ(x) > 0,x ∈ X (7)

Assuming f is continuous and square-integrable with respect to ρ, and with the gradient of f

stored in the column vector ∇xf(x) =
[

∂f
∂x1

· · · ∂f
∂xd

]T
, we define the d × d correlation matrix

C as the expectation of the outer product of the gradient vector with itself:

C = Eρ

[
(∇xf)(∇xf)

T
]

(8)
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Since C is symmetric and positive semidefinite, consider its eigenvalue decomposition:

C = WΛWT , Λ = diag(λ1, . . . , λd), λ1 ≥ · · · ≥ λd ≥ 0, WTW = I (9)

It is shown that the gradient of f with respect to an eigenvector is equal to the corresponding
eigenvalue.

Lemma 2.1. The mean-squared directional derivative of f with respect to the eigenvector wi

is equal to the corresponding eigenvalue: E
[(
(∇xf)

Tfwi

)2]
= λi.

With the eigenvalues sorted in decreasing order, we are able to separate eigenvectors (columns
of W) into two sets.

Λ =

[
Λ1

Λ2

]
, W = [W1 W2] (10)

where Λ1 = diag(λ1, . . . , λn) with n < d, and W1 is d× n.
Define the new, partitioned variables y ∈ Rn and z ∈ Rd−n by

y = WT
1 x, z = WT

2 x (11)

from which any point of the original domain X can be expressed:

f(x) = f(W1y +W2z) (12)

Consider the following lemma:

Lemma 2.2. The mean-squared gradients of f with respect to the coordinates y and z satisfy:

E
[
(∇yf)(∇yf)

T
]
= λ1 + . . .+ λn, (13)

E
[
(∇zf)(∇zf)

T
]
= λn + . . .+ λd (14)

Proofs for both of these Lemmas are found in [10]. With this split, we know that, on average,
f(x) is more sensitive to perturbations along the first set of eigenvectors. This result justifies
the term active subspace. If, for example, the smallest eigenvalue λd is exactly zero, the mean-
squared change in f along wd is null. Therefore, discarding the dth direction would lead to exact
dimension reduction, where no information is lost. This is the ideal scenario.

2.2.2 Approximation in the active subspace

Our goal is to construct a function g = g(y) that depends only on the n < d active variables,
and study its parametric dependence as a proxy for f(x), since we assume that the number of
parameters d is too large for proper standard response surface construction. Essentially, we wish
to approximate an d-variate function f by a function which is z-invariant. Doing so necessitates
managing at least two approximations. First, approximating f by a z-invariant function incurs
information loss, which leads to errors. Secondly, we must build an n-variate response surface,
which, by construction, may not always be perfectly fitted. These errors are bounded, and they
are analysed in this section.
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Conditional expectation For a certain coordinate y, the best guess one can make at the value
of f is the average over all values of x that map to y.

g(y) = E [f | y] =
∫
z

f (W1y +W2z) πZ|Y (z) dz (15)

Being a conditional expectation, G is the best mean-squared approximation of f given y.
As such, we can approximate the original function f(x) with a function, g, defined in the

reduced space:
f(x) ≈ F (x) ≡ g(WT

1 x) (16)

Doing so will inevitably lead to errors, unless the eigenvalues of the discarded subspace W2

are zero (exploiting Lemma 2.2). Further, theorem 2.3 provides an upper bound to the error
commited by this approximation.

Theorem 2.3. The mean squared error of F defined in (16) is bounded from above by:
E [(f − F )2] ≤ C1(λn+1 + . . .+ λd), with C1 a constant.

The trouble with the approximation of g is that each evaluation of it requires an integration
with regards to the discarded variables z. In the case of successful active subspace discovery,
the number of discarded directions can be high, leading to consequential numerical integration
costs. However, if the discarded eigenvalues λn+1, . . . , λd are small, which we hope they are,
then small changes in z produce very little change in f . Thus, the variance of f along z is small,
and a standard Monte Carlo will accurately approximate the conditional expectation g while
deriving an error bound on said approximation. Define the Monte Carlo estimate ĝ = ĝ(y)

f(x) ≈ F̂ (x) ≡ ĝ(WT
1 x) (17)

which, after combining the usual error bound for a Monte Carlo approximation with the result of
Theorem 2.3 yields the total error bound made when approximating a function f by an N -point
Monte Carlo estimation of its conditional expectation at a given y.

E
[
(f − F̂ )2

]
≤ C1

(
1 +

1

N

)
(λn+1 + . . .+ λd) (18)

This gives an easy criterion to evaluate the precision of the subspace. In practice, a single point
Monte Carlo is accurate enough to, provided the sum of discarded eigenvalues is small enough.
If the error committed by these two successive approximations is too high, we can increase the
size of the subspace in order to reduce the error. The other option is to increase the size of the
training data set.

2.3 Clustering through Gaussian Mixture Models

Following a Divide and Conquer approach, we wish to split up our design space into smaller
domains where the function exhibits a certain trend. Since it is not in advance known what we
are looking for, we use unsupervised learning to identify patterns in the data. We formulate
a probabilistic model which postulates certain unobserved variables -called latent variables-
which correspond to things we are interested in inferring. We are focused on one type of latent
variable model: the Gaussian Mixture Model. In complex cases, distributions rarely follow
simple distributions. For instance, the data might be multimodal (figure 2).
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Figure 2: Probability density function of a one-dimensional GMM

In this situation, we model the data in terms of a mixture of several components, where
each component has a simple parametric form: a Gaussian distribution. We assume each data
point belongs to one of the components, and we try to infer the distribution for each component
separately. In contrast to usual methods such as K-means which rely on Euclidean distance
between the input locations, our clustering depends on the Mahalanobis distance in the joint
input-output space. Our clustering is thus driven by function topology, and is unbothered by
space-filling Designs of Experiments, where Euclidean distance is non informative. By consid-
ering the joint law of the inputs and outputs (X, Y ), function values play a key role in splitting
up the domain into clusters where the objective function exhibits similar trends. Note that we
could have considered the joint law of the inputs and the gradients in the same manner, and a
comparison of both these methods will be carried out in the future.

We are interested in making decisions based on function topology. Therefore, instead of
considering only the inputs X = (x1, . . . , xd) where xi ∈ Rd are assumed to come from a
set of identical and independently distributed random variables, we consider the joint law of
the inputs and their corresponding outputs, Y ∈ R. In this work, we only consider the scalar
function y = f(x) as the output, so the conjoint space of (X ,Y) = Z = (z1, . . . , zN) where
zi = (xi, yi) ∈ Rd+1 is considered. For future work, note that the formalism detailed here
would apply in the multi-output case with very little change. In the case of GMM, we assume
the probability density function of Z follows a weighted combination of a given number K of
multivariate Gaussian laws in Rd+1 such that:

Z ∼
K∑
k=1

αk N (µk,Σk) (19)

where αk is the proportion of the Gaussian k in the mixture. In eq.19, being probability density
functions, it goes without saying that ∀k ∈ [1, K] , αk ∈ [0, 1] and

∑K
k=1 αk = 1. Denote

µk =

(
µX

k

µY
k

)
the X and Y components of the vector of means. Similarly, Σk =

(
ΣX

k σk

σT
k ξk

)
is

the covariance matrix.
Recall that a multivariate Gaussian distribution is defined by its mean µk and its covariance

matrix Σk ∈ Md+1(R), which is symmetric positive definite. These parameters are estimated
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by the alternating Expectation-Maximisation algorithm [11], which was designed for this pur-
pose.

Once the parameters have been estimated, we can calculate the probability of membership of
every point to every cluster, that is to say the probability for a given (x, y) to belong to cluster
k. It is given computing the posterior probabilities obtained by Bayes’ formula where κ denotes
the discrete random variable associated with the clusters:

π
(
κ = k | (X, Y ) = (x, y)

)
=

π(κ = k) π
(
(X, Y ) = (x, y) | κ = ki

)∑K
k=1 π(κ = k) π

(
(X, Y ) = (x, y) | κ = k

) (20)

=
αk N (µk,Σk)

π(X, Y )

We then partition our data points by assigning each point to the cluster to which it has the
highest probability of membership. Mathematically, given (xi, yi) in the conjoint space, that
particular training point i lies in cluster j, where:

j∗ = arg max
j=1,...,K

π (κ = j | (X, Y ) = (xi, yi)) , i = 1, . . . , N (21)

2.3.1 Recombination

Now that the parameters have been identified, and that every point in the dataset has been
labelled, we can train the local Kriging experts. Each expert is trained using the data points
of that specific cluster. In order to have a global surrogate model able to predict the unknown
response y of a new entry x ∈ Rd, we must then recombine the local experts, fk. We proceed
by constructing a linear combination of the local experts:

f̂(x) =
K∑
i=1

βk(x)fk(x) (22)

where β = (β1, . . . , βK) is the vector of the local weighting functions (local in the sense that
its values depend on x). Please note however, that while each expert has been trained using the
training set of its specific cluster, each expert is defined over the entire design space. Mathe-
matically, this reads:

The support of each expertfk(x) is the entire domain X ∈ X ⊂ Rd

The training set of cluster k is denoted Xk

The entire dataset is made up of the union of the training sets, such that:

X = ∪K
k=1Xk

Xi ∩Xj = ∅, i ̸= j

The most basic form of recombination is what is sometimes known as a hard recombination:

the gating network is the Heaviside function: βk(x) =

{
1, if x belongs to cluster k
0, otherwise

.

This is justified since the local expert fk is best equipped to accurately predict a value located
in cluster k. This kind of recombination is very useful to deal with discontinuous objective
functions. However, when dealing with continuous functions, such a recombination strategy
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could lead to approximation errors. Furthermore, in the context of optimisation through gradient
descent, we need the surrogate model to be continuous and even differentiable, requiring what
is most often known as smooth recombination.

In order to maximize performance, the weights making up the linear combination will not
be constant throughout the design space. Most response surfaces are most accurate when in-
terpolating. Take cluster k, for example. Near µk (the center of cluster k), it is most likely
that fk can provide the most accurate estimation of the objective function, since it has been
trained by the surrounding points. Therefore, we will strongly lean on this expert by weight-
ing it heavily. To achieve this, we weigh the experts’ predictions according to the location’s
probability of belonging to a particular cluster. It just so happens that the GMM parame-
ter estimation yields the analytical formula for the probability of belonging to each cluster,
βk =

(
π(κ = 1 | X = x), . . . π(κ = K | X = x)

)
. This leads to the classical expression for

mixture of experts smooth recombination, as expressed by Jordan and Jacobs [12]:

f̂(x) =
K∑
k=1

βk(x)fk(x) =
K∑
k=1

π(κ = k | X = x)fk(x) (23)

Notice how the expression of βk depends only upon x. This result is critical as it allows
the surrogate model to predict new points, not just the points at which it was trained. These
expressions are easily obtained from the Gaussian parameters computed by the EM algorithm:
from the conjoint law (X, Y ) ∼

∑K
k=1 αkN (µk,Σk) we can derive the law of X | κ = k

without knowing y.
π(X | κ = k) = N

(
µX

k ,Σ
X
k

)
(24)

where µX
k ,Σ

X
k are defined under equation (19). This is different from the laws we would have

obtained by applying the EM solely on the inputs: in essence, it is a marginalisation of the
probability of membership of the conjoint law, where we have marginalised with regards to the
known outputs y = {f(xi)}i=1,...,N .

2.4 Clustered Active Subspaces method

These building blocks enable us to present the strategy behind the Clustered Active Sub-
spaces method.
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Algorithm 1: Clustered Active Subspaces method
1 Construct an initial dataset of N samples {D} = (xi, yi,∇xyi). These are independent

samples “drawn” according to the spatial density distribution.
2 Assemble the joint data zi = (xi, yi) ∈ Rd+1, i = 1, . . . , N and set a number of

clusters K.
3 Assume Z = (z1, . . . , zN) follows a Gaussian mixture

π (z | αk,µk,Σk) =
K∑
k=1

αk N (µk,Σk) with

{
µk ∈ Rd+1,Σk ∈ Md+1(R)∑K

k=1 αk = 1

4 Identify hyperparameters using the Expectation-Maximisation algorithm
5 Perform hard clustering from highest posterior probability. For (xi, yi) ∈ z:

j∗ = arg max
j=1,...,K

p
(
k = j | (X, Y ) = (xi, yi)

)
i = 1, . . . , N

6 for k in [1, K] do
7 Obtain local empirical covariance of gradients with

Ck ≈ Ĉk = Eρk(x)

[
∇f(x)∇f(x)T

]
=

1

M

M∑
j=1

∇f(xj)∇f(xj)
T , M = |k|

8 Decompose matrix Ĉk = WkΛkW
T
k with WT

kWk = Ik
9 In each cluster, f(x) ≈ Gk(W

T
1,kx) with Wk = [W1,k,W2,k]

10 Define local AS kernel kk(WT
1,kx,W

T
1,kx

′; Θ) with Θ = (µk,Σk)

11 Train local Kriging fk(xk) using the points of current cluster.
12 end
13 Recombine local experts to form a global surrogate model.

3 OVERLAPPING

Initial tests have shown that most of the prediction errors of our surrogate model originate
at the boundaries between clusters. We attribute this error to extrapolation: each of the local
experts are trained using data belonging to their cluster. When asked to predict new values near
the boundaries, none of the local response surfaces have been trained in that area, which leads to
prediction errors. In order to mitigate this issue, we extend the training set of each cluster so that
they encompass these frontier areas, reducing areas of extrapolation and therefore improving
predictive accuracy.

3.1 Probability of membership based overlapping

The first idea is to rely more heavily on the probability of membership functions (βk =
π(κ = k | X = x)) yielded by the Gaussian Mixture Model. These functions are each defined
over the entire domain, as shown in figure 3a on a two dimensional space corresponding to the
domain of the Branin function [7].
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(a) Probability of membership to each cluster in a
two-dimensional input space

(b) Maximal probability of membership to a
cluster in a two-dimensional input space

Figure 3: Exploiting the probability of membership functions

For each cluster, instead of only assigning points through their maximal probability of mem-
bership, we add points whose joint probability of membership is superior to a certain threshold,
say γ ≥ 0.3. This threshold could be another hyperparameter we would need to optimally
choose. Including too many points would increase computation time as well as increase the
possibility of adding irrelevant or even detrimental points to the training set. However, enough
points must be added in order to sufficiently enrich the response surface and increase perfor-
mance by reducing the recombination error around the cluster boundaries.

Figure 4 shows which of the training points of the original dataset are added to the training
set of cluster 4 (bottom right cluster). Graphically, white points are the points which have been
identified as belonging to cluster 4 by the true probability of membership, as computed by the
joint law of (X, Y ): argmaxj=1,...,K π

(
κ = j | (X, Y ) = (xi, yi)

)
. However, The marginal

probability of membership βk(x) = π(κ = k | X = x) misclassifies some of these points
(black points circled in pink).

Results are promising, since the overlapping procedure identifies both points which have
been misclassified and points belonging to other clusters but near the boundaries of cluster 4.
As a bonus, all suggested points are pertinent: no points are far away from the cluster, they
should all contribute positively to predictive power.
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Figure 4: Adding points to a cluster’s training set. White points belong to the considered cluster,
as determined by the GMM clustering. The contour is the marginal probability of membership
to the current cluster, as computed with βk. Cluster boundaries correspond to βk = 0.5. Black
points circled in purple are points added to the current cluster’s training set by the overlapping
procedure.

This strategy is satisfying but only factors in the probability function value. It does not
allow us to control the distance (in the parameter space) between the point and the boundary.
Depending on the profile of this probability of membership function, additional points can be
selected regardless of their distance to the boundary. In order to relieve this limitation, we
propose to formulate a criterion which is linked to the Euclidean distance to the boundary. A
tool for this kind of job is Support Vector Classifier.

3.2 Supervised learning

We now propose to resort to supervised learning by training a classifier on the labels obtained
after GMM clustering. From the gallery of options [13], we chose a Support Vector Machines-
based classifier in order to benefit from one of its major advantages, the optimal separation
margin. In addition to giving us an explicit formulation for the cluster boundaries, the margin
allows us to define a Euclidean distance from each point in the domain to any cluster boundary.
This is information we can use to define the appropriate width of the overlapping region.

3.2.1 Support Vector Classifier

Support Vector Machines (SVM) [14] aim to identify the optimal hyperplane which max-
imises the minimal distance (in the direction normal to said hyperplane) between two points of
different sets. Consider our data (xi, yi)i=1,...,N where yi ∈ {−1, 1} are the labels given by a
classifier. In the case of linearly separable data, we aim to build a function, the decision function
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of the form
f(x) = wTx+ b = 0, w ∈ Rd (25)

Classification is induced by the sign of f , G(x) = sign
[
wTx+ b

]
. The margin between two

sets is defined as the minimum distance between all possible distances ∥.∥w,b between two
points from distinct sets.

M(X1, X−1;w, b) = min
x+∈X1,x−∈X−1

∥x+ − x−∥w,b (26)

The Optimal Separating Hyperplane is defined as the linear separator which maximises the
margin:

max
w, b

M(X1, X−1;w, b) (27)

It is shown in [15] that this maximisation problem simplifies to:

min
(w,b)∈Rd+1

∥w∥22 (28)

s.t. yi(w
Txi + b) ≥ 1 yi ∈ {−1, 1}

Another valuable feature of SVMs is that they can be extended to deal with non-linearly
separable data, by instead considering:

f(x) = wTϕ(x) + b (29)

This is known as the kernel trick, where ϕ(.) is a non-linear mapping. This is equivalent to
artificially increasing the dimension of the parameter space. Using a kernel
K(xi, xj) =< ϕ(xi), ϕ(xj) >H does not change the optimization problem, and we do not need
to explicitly know the mapping, only its dot product K(., .). This trick allows for much better
classification in the case of data which is tough to separate linearly, as shown in section 5.2.

SVC is traditionally a binary classifier, but extension to the multiclass scenario is straight-
forward.

4 SELECTION OF THE SIZE OF THE ACTIVE SUBSPACES

One of the key problems in dimension reduction is just how much reduction you can get away
with. Inevitably, reducing the dimension will lead to information loss, but keeping too many
dimensions will not help mitigate the problems stemming from the curse of dimensionality.
As such, it is common in the literature to implement an energy criterion on the spectrum of
eigenvalues of the empirical covariance matrix to determine the number of directions to discard.
Sometimes known as the Relative Information Content, common thresholds are 99% or 99.9%,
as seen in [16]. RIC is defined as the following ratio, with n the number of retained directions
in a d-dimensional problem:

RIC(n) =
∑n

i=1 λi∑d
i=1 λi

≥ ϵ (30)

Recall that our sample set is drawn from a population with an unknown probability distribu-
tion. Therefore, the eigenvalues and eigenvectors are probabilistic. We can then estimate them
by eigendecomposition of the empirical covariance matrix Ĉ. Rigourously, equation (8) should
read:

Ĉ =
1

N

N∑
j=1

∇xf(x)∇xf(x)
T (31)
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which can then be decomposed into:

Ĉ = ŴΛ̂ŴT , Λ̂ = diag(λ̂1, . . . , λ̂d), λ̂1 ≥ · · · ≥ λ̂d ≥ 0 (32)

Since the size of the sampling set is limited, this estimate is biased. One way to estimate
this error is to rely on the bootstrap replication technique [17]. The basic idea is to replace the
original population with a unique plugin sample. Statistics are obtained using a Monte Carlo
technique applied to bootstrap samples from drawing with replacement in the plugin dataset.
Applying this procedure to the eigenproblem of equation 31 provides error estimates for the
spectral information.

Figure 5: Eigenvalue spectrum and cut-offs based on energy criterion threshold values

These errors are function of the size of the initial dataset, M [10], [18]. Certain considered
datasets may be small enough for the bootstrap estimated error on the spectral information to
exceed the threshold imposed by the RIC.

We propose to transpose the truncation criterion from spectral information (eigenvalues)
to the generalisation error of a response surface trained in the reduced space. The idea is to
gradually increase the number of retained dimensions and to monitor the generalisation error.
This is done via Q2, which is analogous to the Stone-Geisser R2 criterion, but based on model
predictions at unseen locations.

R2 = 1− Residual Sum of Squares
Total Sum of Squares

= 1−
∑N

i=1(y[i]− ŷ[i])2∑N
i=1(y[i]− y)2

(33)

Q2 = 1− Predicted Residual Sum of Squares
Total Sum of Squares

= 1−
∑N

i=1(y[i]− ŷ−i[i])
2∑N

i=1(y[i]− y)2
(34)

where ŷ is the model prediction, ŷ−i the prediction by the model where location i has been
witheld, and y is the mean of all training values y.

Anticipating that even a virtual LOO for Kriging in each subspace size will be expensive,
we replace Kriging with cheaper Ridge Regression [19]. The rationale is that both approaches
lead to the same truncation, but Ridge Regression will do so cheaply while remaining robust to
dataset size. These methods are compared in section 5.3.

98



Maxime Chapron, Christophe Blondeau, Michel Bergmann, Itham Salah el Din, and Denis Sipp

5 RESULTS

5.1 Applications

Another problem of high-dimensional problems is difficulty of visualisation. Our first test
case is the two dimensional Branin function [7]. While offering limited potential for dimen-
sion reduction, it is a well known test case for optimisation, and will help demonstrate certain
concepts concerning clustering and overlapping. Being ultimately interested in aerodynamic
shape optimisation, we apply the Clustered Active Subspaces method to a standard benchmark
in aerodynamics, the NACA0012 aerofoil. This dataset in included in the Active Subspaces
Python Toolbox.

5.1.1 The Branin function

f(x) =

(
x2 −

5.1

4π2
x2 +

5

π
x1 − 6

)2

+ 10

[(
1− 1

8π

)
cosx1 + 1

]
+ 5x1 (35)

Figure 6: The Branin function

5.1.2 NACA0012 aerofoil

The NACA class of symmetrical aerofoils are well known benchmarks for CFD solvers. This
particular implementation of the aerofoil is characterized by 18 Hicks-Henne bumps [3]. The
dataset is comprised of 1756 Euler CFD runs, with a space-filling design of experiments. It fea-
tures two objective functions, lift and drag, and all runs include the computations of the gradi-
ents of both objective functions with regards to all control parameters. Gradients are computed
using adjoint methods available in SU2 [20]. The lift function exhibits a simple dependence
upon the input parameters and is not challenging for dimension reduction. Therefore, in all
cases featuring the NACA test case, the function of interest will always be the drag function.

This is a large dataset, and rich considering it is ’only’ an 18-dimensional problem. There-
fore, we are able to split it into a training set and a testing set. We can thus estimate errors of
generalisation without the need for cross validation. The standard train/test split employed is
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Figure 7: Pressure field around a NACA0012 aerofoil resulting from an inviscid CFD compu-
tation with SU2

80-20, which leads to an effective training dataset of 1404 runs. This split is kept the same to
ensure repeatability.

5.1.3 ONERA M6 transonic wing

The second physics-based dataset is also included in the Active Subspaces toolbox. It is a
classic test for three-dimensional transonic flow, with the added bonus of multiple wind-tunnel
tests to which researchers can compare their results. In this particular implementation, the
wing is defined by 50 FFD control parameters. The dataset once again features two objective
functions, the lift and drag coefficients, as well as their gradients with respect to all 50 design
parameters. Due to the increased costs of 3D CFD simulations, this dataset features 300 points.

Figure 8: Surface flow on an M6 wing
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5.1.4 Data analysis

Before launching oneself into anything, it is vital to approach the data heads-up. This is
neither pre-processing since the variables are not altered, nor data mining since we are not
dealing with large swaths of data. Yet, this step cannot be ignored. Obviously, a major concern
is the potential for dimension reduction in the considered data.

We start by evaluating whether we can realistically expect dimension reduction to succeed
in this particular case. We present two such methods.

Figure 9: Heatmap of the empirical covariance matrix Ĉ

Pre-processing’s main objective, other than to condition the data set as best as possible in
order to limit numerical problems, is feature selection. Well known in data science, feature
selection consists in qualitative analysis of the input parameters, as a first step before any ex-
ploitation. In our case, it serves a dual purpose: quickly determine the parameters with the
most influence on our objective function, and get appreciate the magnitude of dimension reduc-
tion for the considered dataset. Methods like the correlation matrix heatmap (figure 9) clearly
display the strength of correlation between certain design parameters, which usually indicates
some linear combination of these parameters will produce a strongly active component, result-
ing not only in successful dimension reduction, but also a relevant direction with regards to the
objective function.
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Figure 10: Coefficients of a Ridge regression determined through cross validation (green), and
diagonal of the covariance matrix (red)

These results are confirmed by performing a Ridge regression [19] on the data. This is in
essence a linear regression with regularisation, whose coefficients give a direct indication of the
prominence of each design parameter. We see in figure 10 that parameters 7 through 12 seem
to be the most influent. For reference, we have added the scaled values of the diagonal of the
empirical covariance matrix Ĉ, which provides very similar results. Because some parameters
seem to be more influent than others, we can expect dimension reduction to succeed.

5.1.5 Classifier accuracy

Increasing the training sets increases accuracy by reducing the the need for the response
surfaces to extrapolate. This is beneficial to any recombination method. However, since we
are using a smooth recombination which is a linear combination of the neighbouring experts,
the weight attributed to each expert is instrumental to the accuracy of the recombined surrogate
model. Since we have shown in section 2.3 that we do not use exactly the same functions for the
clustering and the recombination, it is legitimate to wonder if some of the recombination error
isn’t due to this estimation. Since the marginal PoM classifier is based on the same principle as
the joint PoM classifier (j∗ = arg maxj∈[1,K] PoMj), our reasoning is that misclassified points
indicate inaccuracies in the βk functions for these particular locations. Identifying misclassified
points can help accuracy, since these functions are used to weigh the contributions of each local
expert to the global surrogate model (see eq.23). A useful tool to evualuate the accuracy of
a classifier is the confusion matrix. A confusion matrix compares the percentage of correctly
classified points from each cluster. A perfect classifier has a diagonal matrix: for each cluster,
100% of the points have been correctly classified. In all cases considered (Branin, NACA, M6
ing), the matrix is very diagonal for a host of cluster numbers; the βks are deemed pertinent.

102



Maxime Chapron, Christophe Blondeau, Michel Bergmann, Itham Salah el Din, and Denis Sipp

Figure 11: Confusion matrix of the marginal probability of membership classifier, in the 5
cluster case

We now contrast this with the confusion matrix between of the support vector classifier. We
repeat the procedure with two widely used kernel options, a linear separator and an RBF-based
kernel. The blue outlines are the probable locations of the cluster boundaries, as computed by
the Gaussian Mixture model, while the shaded contours determine the boundaries as computed
by SVM.

Figure 12: Comparing the cluster boundaries calculated by the marginal probability of mem-
bership (blue lines) with boundaries obtained by the linear kernel support vector classifier. Also
featured is the confusion matrix of the linear kernel support vector classifier in the 5 cluster case

103



Maxime Chapron, Christophe Blondeau, Michel Bergmann, Itham Salah el Din, and Denis Sipp

Figure 13: Comparing the cluster boundaries calculated by the marginal probability of mem-
bership (blue lines) with boundaries obtained by the RBF kernel support vector classifier. Also
featured is the confusion matrix of the RBF kernel support vector classifier in the 5 cluster case

Since our dataset is not linearly separable, the RBF kernel allows for more accurate classi-
fication than its linear counterpart. The confusion matrix is an indication of the learning error
of classifiers. While this is an important metric, we are more interested by the generalisation
error: how do the classifiers perform on points that have not been used to train them?

To this end, we generate a wider training set, perform an 80-20 train/test split, and ask the
classifiers to predict the label of unseen points. We then compare these predictions to their
actual classification as computed by the joint law of membership. Table 1 concerns the 2D
Branin test case, and table 2 focuses on the NACA dataset.

Number of clusters Method Learning error Generalisation error

4 clusters
Marginal PoM 8.00 % 12.28 %

Linear SVC 10.22 % 12.28 %
RBF SVC 2.22 % 8.77 %

5 clusters
Marginal PoM 5.33 % 8.77 %

Linear SVC 10.22 % 14.04 %
RBF SVC 2.22 % 12.28 %

10 clusters
Marginal PoM 4.44 % 10.52 %

Linear SVC 14.22 % 26.32 %
RBF SVC 7.99 % 15.78 %

20 clusters
Marginal PoM 3.11 % 28.07 %

Linear SVC 30.66 % 38.59 %
RBF SVC 7.99 % 22.81 %

Table 1: Comparing classifier accuracy on the Branin dataset, 80-20 split
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Number of clusters Method Learning error Generalisation error

3 clusters
Marginal PoM 9.76 % 14.77 %

Linear SVC 26.86 % 33.52 %
RBF SVC 4.20 % 17.89 %

5 clusters
Marginal PoM 9.47 % 22.15 %

Linear SVC 31.27 % 40.06 %
RBF SVC 4.84 % 28.69 %

10 clusters
Marginal PoM 9.47 % 18.18 %

Linear SVC 25.28 % 40.06 %
RBF SVC 4.42 % 34.66 %

20 clusters
Marginal PoM 2.06 % 23.58 %

Linear SVC 9.18 % 49.72 %
RBF SVC 3.06 % 46.6 %

Table 2: Comparing classifier accuracy on the NACA dataset, 80-20 split

This confirms that the marginal probability of membership classifier, j∗ = argmaxj∈[1,K] βj

is robust to different cases.
Nonetheless, we propose two areas of development.

βk switching for misclassified points Firstly, points are misclassified by the marginal PoM
classifier because of inaccuracies of the marginal probabilities of membership, βk. This is prob-
lematic since these βk(x) are used to weigh the Kriging models, so these errors will be prop-
agated in the reconstruction. We correct the weighting attributed to each expert by attributing
the highest marginal probability of membership to the location’s actual cluster. This changes
only the values of the two βks, for the sites which have been misclassified. While this little
trick cannot help predictive performance of the model at new locations, it should improve the
learning error, leading to a more accurate surrogate model.

Weighted SVC The SVC formalism enables a extension to reduce the number of misclassi-
fications. The SVC allows for a weighting of the locations, to ensure certain samples deemed
more important are correctly classified. The weighting comes from the true (joint law of (X, Y ))
probability of membership:

pi,j =
π
(
(X, Y ) = (xi, yi) | κ = j

)
∑K

k=1 π
(
(X, Y ) = (xi, yi) | κ = k

) (36)

We can also use the probability of generating a point, knowing that it belongs to the current
cluster. The weighting would then be:

pi = π(X = xi | κ = k), π(X = x | κ = k) = N (µk,Σk) (37)

In doing so, we are in essence trying to force the correct classification of points with the lowest
probabilities of membership. In all rigor, the weighting we use is 1 − pi,j , since were are
shifting importance towards uncertain points. This extension deserves more time to be correctly
analysed, and will therefore be presented in a future publication.

105



Maxime Chapron, Christophe Blondeau, Michel Bergmann, Itham Salah el Din, and Denis Sipp

5.2 Accuracy gains through probability of membership based overlapping

Consider first the NACA dataset, from a purely clustering point of view. At 1404 points for
18 dimensions, it is still tractable for standard responses such as Kriging. As such, a single
global Kriging model over the entire design space will serve as the benchmark (blue curves).
To this benchmark we compare both recombination strategies (hard, in red, and smooth, in
green) implemented in the SMT surrogate modelling toolbox [21]. Finally, the orange curves
correspond to the overlapped Kriging method detailed in section 3. We successively apply these
three methods for an increasing number of clusters, and use the generalisation error

RMSE =
1

Ntest

√√√√Ntest∑
i=1

(
yi − ŷi

)2 (38)

as our performance metric, with yi and ŷi respectively denoting the true function value and the
model’s prediction at xi.

Figure 14: Generalisation error of standard and improved methods for local expert recombina-
tion. The orange curve shows the benefit of overlapping over standard recombination methods.

Drag coefficient is not expected to feature any discontinuities, which is why the hard recom-
bination presents the most error. Smooth recombination improves upon these performances, but
Kriging struggles with extrapolation, and boundaries between clusters are mis-modelled. For
the overlapping, we chose the cardinal criterion, which requires the addition of 50% of points to
each cluster. As hoped, overlapping is beneficial to accuracy, while not impacting training time
all that much. Even more impressively, for 4 and 5 clusters, overlapped Kriging is as accurate
as the single global Kriging model.
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Figure 15: Generalisation error and computation time of standard and improved methods for
local expert recombination, using PoM threshold criterion

The cardinal criterion can be problematic since it forces the addition of points, regardless of
whether the new points are actually beneficial. To circumvent this, we implement a probability
threshold criterion. All points more likely than a certain threshold γ to belong to the current
cluster are added to the local response surface’s training set. This is more flexible: if no pertinent
points are found, none are added. If a lot of points could benefit the response surface, they are
all added.

Similarly to when using the cardinal criterion, using the probability threshold criterion leads
to improved accuracy over the other clustered methods. However, while accuracy is good, it
does not intersect the blue curve. Judging by the computation time, we believe this is because
few points are actually added to the training sets, since very few points are likely enough to
belong to other clusters than their own. Excessively lowering the threshold will lead to increased
computation times, and adding points which may not be beneficial to accuracy. This leads to an
important set of questions: which criterion to choose, and what value needs to be set?

5.3 Active Subspace dimension selection criterion

In the absence of a dimension selection criterion, the only option is to train a Kriging model
in every possible subspace size, then compare accuracy and computation time to determine the
optimal subspace size. Figure 16 below shows the generalisation error of the Kriging models
as a function of the size of the active subspace for drag coefficient around the NACA aerofoil.
The training was done on 80% of the sample, which yields a training set of 1404 points and a
test set of 352 points.
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Figure 16: Generalisation error and computation time for Kriging for different active subspace
sizes. Predictably, larger active subspaces lead to more accurate Kriging models, no matter the
trend type.

This is the benchmark to which we will compare the criteria presented in section 4. Three
common thresholds for the energy criterion are also included in the comparison.

Method Suggested Dimension Criterion time Generalisation error Total time
95% cut-off 4 ∅ 2.45× 10−3 161s
99% cut-off 6 ∅ 1.78× 10−3 246s

99.9% cut-off 11 ∅ 1.47× 10−3 472s
Single Ridge 3 10−2s 4.4× 10−3 119s
LOO-Ridge 4 17s 2.45× 10−3 178s

RBF 4 56s 2.45× 10−3 217s
Virtual LOO 4 400s 2.45× 10−3 561s

Kriging 6 787s 1.78× 10−3 787s

Table 3: Comparing dimension selection criteria on the global 18-dimensional NACA dataset

The regression criterions (Ridge and RBF) are capable of identifying pertinent active sub-
space sizes affordably, confirming our idea has merit. In the presented case, the dataset is very
large, which means the discovery of the eigenvalues is very precise (see bootstrap interval in
figure 5), enabling the energy criterion to perform well, but this may not always be the case.

5.4 Putting it all together: the clustered active subspaces method

We now put to use the developments presented in the two previous subsections. Decision
on the number of clusters for now still requires user input, so we iterate over the number of
clusters. For each run, after the number of clusters has been set, the local active subspaces are
discovered and the clustered dataset is projected into these reduced spaces. Pertinent nearby
points are then added to the training sets using the overlapping procedure detailed in section
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3. The Kriging models are trained, then recombined. The train/test split is the same as in
section 5.2. To our clustered active subspaces method, we compare the performance of using a
single global active subspace and corresponding surrogate model. Performance metrics are the
learning error (RMSE on the training set), generalisation error (RMSE on the unseen test set)
and computation time.

We first present the behaviour of the different surrogate model methods as a function of the
number of clusters used to partition the design space. We compare the CAS method (in blue)
with a single Kriging model trained on the entire design space (red cross), a Kriging model
trained in a single global active subspace (cyan cross), a mixture of Kriging models trained in
the initial space (green), and a mixture of experts trained on the local active subspaces (orange).
The benchmarks are the single Kriging model and the global AS + Kriging, both correspond-
ing to the one cluster case. The CAS method features clustering, dimension reduction, and
overlapping. No other method considered here features all three.

(a) Generalisation error (b) Computation time

Figure 17: Generalisation error and computation time of the surrogate models on the NACA
case.

The NACA case features a very large training set, for a reasonable amount of directions. A
single Kriging model performs well, and is the reference in terms of accuracy. Clustering and
the use of local active subspaces is, in most cases, beneficial to accuracy when compared to
the global Active Subspace + Kriging method. However, in the overlapped case, one must be
careful when deciding which points to add, as adding the wrong points can be detrimental to
predictive power. These results are consolidated in the following table.
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Method Learning Error Generalisation error Computation time
Single Kriging 9.00×10−15 2.06× 10−3 339s

MoE 9.60× 10−4 2.34× 10−3 252s
AS + Kriging 3.00×10−15 3.62× 10−3 73s

Clustered Active Subspaces 6.80× 10−4 3.72× 10−3 356s
Clustered AS + MoE 1.44× 10−3 1.82× 10−3 71s

Table 4: Comparing surrogate models for the drag coefficient on the 18-dimensional, 1400 point
NACA test case

ONERA M6 wing Taking these methods to the 50 dimensional ONERA M6 wing presents
some challenges. Firstly, the 50 dimensions should be more of a challenge for a single classic
surrogate model such as Kriging. The much lower number of points in the dataset is also a good
challenge.

Figure 18: Generalisation error and computation time of the different surrogate models on the
M6 case

Figures 18 and 19 compare the CAS method with the same surrogate models as in the NACA
test case above, but this time compares their learning error as well as their generalisation error.
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Figure 19: Learning and generalisation error of the different surrogate models on the M6 case

Three and five clusters offer the best predictive power for the CAS method, at reasonable
cost. Note how as opposed to the NACA case, the Kriging model has less predictive power in the
original domain than in the reduced space, due to the increase in dimension. The learning error
is larger for the methods which include dimension reduction. This is because when reducing
dimension, regressive Kriging must be used, whereas training the Kriging model in the original
domain enables the use of interpolation. Exact results are presented in the table below.

Method Learning Error Generalisation error Computation time
Single Kriging 6.0× 10−16 3.4× 10−3 32.7s

MoE 1.0× 10−4 3.7× 10−3 41.1s
AS + Kriging 1.4× 10−3 1.6× 10−3 1.71s

Clustered AS + MoE 4.0× 10−16 4.2× 10−3 3.84s
Clustered Active Subspaces 1.1× 10−3 1.6× 10−3 7.76s

Table 5: Comparing surrogate models for the drag coefficient on the 50-dimensional, 270 point
M6 test case

6 CONCLUSIONS

This paper presents a novel way to build a global surrogate model in high dimension. Clus-
tering the design space using the joint probability of inputs and outputs is beneficial on several
fronts. Firstly, it helps deal with multimodality by making decisions based on function topol-
ogy, even in cases where the design of experiments is non informative (space filling DoEs, for
example). Second, clustering benefits the Active Subspaces dimension reduction method by
applying it locally, where gradient information is most pertinent.

However, we found that clustering can lead to prediction errors at the boundaries between
clusters, where the local experts are asked to extrapolate. Therefore, one of the main objectives
of this work was to manage the inaccuracies borne of recombination. This was achieved by
extending the training sets of the local experts, leading to patches around cluster boundaries
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where two local experts overlap. This overlapping was shown to be beneficial to predictive
power, and, more importantly for us, we have shown that Clustered Active Subspaces can im-
prove upon existing methods of dimension reduction for surrogate modelling.

In particular, the CAS method exhibits improved predictive power for two benchmark aero-
dynamic test cases, while not impacting the computation time. We have built an accurate sur-
rogate model over a large design space, which we postulate is by construction more robust to
multimodality due to its clustered nature.

7 PERSPECTIVES

The work has highlighted new development perspectives. First of all, the Gaussian Mixture
Model has so far has been built on the joint law of inputs and outputs, π(x, f(x)), but we
could have considered the joint law of inputs and the output’s gradients (π(x,∇f)). We plan
to compare these two options, as this could lead to different cluster boundaries, and perhaps
improved accuracy. The latter has the added benefit of being coherent with our use of Active
Subspaces as a dimension reduction strategy.

Next, keeping with the trend of maximising the use of gradient information, we will test out
the performance gains to be had by using gradient information to build our response surface,
through the use of Gradient Enhanced Kriging.

Overlapping through SVM showed promise, but requires further work to fully exploit the
decision function and determine the size of the overlapping patches.
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Abstract. This paper proposes the use of DNNs as a means to reduce the number of domains
that need to be simulated in multi-row CFD runs in the context of a shape optimization based
on stochastic, population-based algorithms. This is demonstrated in the shape optimization
of a hydraulic turbine that consists of stay vanes, guide vanes, runner blades and the draft
tube. Only the runner blades, the shape of which are parameterized by a volumetric NURBS
lattice, are allowed to vary during the optimization. For the CFD analysis, the NTUA’s GPU-
accelerated multi-row flow solver PUMA, which solves the RANS equations for incompressible
flows, coupled with the Spalart-Allmaras turbulence model, is used. The CFD simulation of
such a multi-row configuration makes use of the mixing plane technique for the interaction
between adjacent rotating and stationary domains. Herein, a DNN-based surrogate to the
mixing plane technique is used to avoid the CFD solution into the domains of the stay and
guide vanes and the draft tube. The DNN is trained based on the coordinates of the (free) control
points of the NURBS lattice and predicts the averaged quantities exchanged at the interfaces
(mixing surfaces) between the guide vanes and the runner as well as the runner and the draft
tube. The optimization is carried out by means of metamodel-assisted evolutionary algorithm
(MAEA) enhanced by the Principal Components Analysis (the EASY platform developed by the
group of authors). This MAEA has a dual role as it is used both for the definition of the optimal
DNN architecture and the shape optimization of the runner.
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1 INTRODUCTION

During the last years, DNNs have been widely used in assisting CFD analysis and optimiza-
tion problems due to their ability to detect input data properties and patterns and make low-cost
predictions. Indicatively, in [1], the group of authors of this paper proposed a DNN-based
surrogate for turbulence closure of the RANS equations. The DNN was used to replace the
numerical solution of the turbulence and transition models by providing the turbulent viscos-
ity field in each pseudo-time iteration of the RANS solver. The less demanding DNN-assisted
RANS solver was demonstrated in the shape optimization of a transonic turbine blade and a car
model. A physics-informed convolutional neural network was used for flow predictions in [2];
emphasis was laid on the preservation of the physical laws. In [3], a deep Long Short-Term
Memory network was used to predict the turbine flow characteristics based on real machine
operation data from a hydropower plant.

In this work, DNNs are used to reduce the number of simulation domains in the case of multi-
row CFD simulations. In specific, a DNN-based surrogate replaces the Rotor-Stator Interaction
(RSI) technique, i.e. the need for simultaneously simulating two successive rows and the iter-
ative exchange of data along the interfaces through the mixing plane technique. A number of
multi-row CFD runs is used to collect data and train the DNNs on them, so that, during the op-
timization of the runner, only the latter undergoes a CFD analysis, whereas the other domains
manifest their presence through the trained DNNs. To showcase the proposed methodology, a
computationally demanding hydraulic turbine application is selected.

Nowadays, hydropower is considered the most important source of renewable energy. In
order to be competitive and meet the tight delivery schedule of new products, suppliers rely on
CFD tools and optimization methods for the design of hydraulic turbines and their components.
At the same time, the increased demand for flexibility in the hydropower plants pushes towards
an extended operating range of hydraulic turbines. When operating at off-design loads, the flow
through the turbine may become unstable and presents instabilities (such as pressure pulsations,
structural vibrations etc.) which compromise the smooth and safe operation of the machine, [4].

Herein, the CFD-based shape optimization of a hydraulic turbine (consisting of stay, guide
vanes, runner blades and the draft tube) aims at reducing the amplitude of pressure pulsations
between the runner and the guide vanes while also ensuring that no cavitation occurs in the run-
ner. An evolutionary algorithm assisted by surrogate evaluation models (Metamodel-Assisted
Evolutionary Algorithm; MAEA) and the Principal Component Analysis (PCA), [5], is used
to optimize the runner blade shape. The evaluation of each candidate solution is carried out
using the in-house GPU-accelerated solver PUMA, [6], which solves the RANS equations for
incompressible flows, coupled with the Spalart-Allmaras turbulence model. The mixing plane
technique is used to model guide vanes-runner and runner-draft tube interactions when running
the CFD code through the entire turbine (this code will be referred to as the CFDF). The idea
this paper is based upon is to train and use DNN-based surrogates to the mixing plane technique,
before and after the only domain to be solved by the CFD tool (that of the runner), to overcome
the simultaneous CFD solution into the domains of stay and guide vanes as well as the draft
tube; the new model will be abbreviated to CFDR as it simulates the flow by the CFD code only
in the runner (=R) domain; the two DNNs are indispensable parts of CFDR). “Optimal” hyper-
parameters of the DNN must be found and this is also based on the above-mentioned MAEA,
which thus undertakes two different roles in this work.

115



Marina G. Kontou, Varvara G. Asouti, Xenofon S. Trompoukis and Kyriakos C. Giannakoglou

2 BACKGROUND METHODS AND TOOLS

2.1 Optimization tool (MAEA)

The shape optimization of the runner geometry as well as the optimization of the DNN hy-
perparameters considered in this work are carried out by means of the MAEA, enhanced by
the PCA. This is implemented in the Evolutionary Algorithms SYstem (EASY) optimization
platform, [7], developed by the PCOpt/NTUA. During each generation, the (µ, λ) EA, main-
tains and updates three populations, namely that of λ offspring, that of µ parents and the set
of the (at most e) best so-far solutions. EASY uses on-line trained surrogate evaluation models
or metamodels that replicate the problem specific model (herein, the CFD tool). The first few
generations run as in a standard EA (used to collect the first TMM evaluated individuals in the
dynamically expanded database or DBEA). Within each subsequent generation, a single person-
alized metamodel is trained for each offspring, on its neighboring already evaluated (during the
evolution) individuals and used to pre-evaluate it at minimal cost. After pre-evaluating all the
population members on the metamodels, only a few promising (λe) individuals in each gener-
ation are re–evaluated on the CFD tool. Radial Basis Functions (RBF) networks are used as
metamodels.

Engineering optimization problems with many design variables, such as the one tackled
herein, usually suffer from the “curse of dimensionality”. To alleviate this problem, the Kernel
PCA is additionally employed in each generation. The PCA of the offspring population is used
to control the evolution operators and/or prune the number of the metamodels’ input units. With
regard to the former, the variances resulted from the PCA are used to transform the parents into
a new feature space. Crossover and mutation take place in the feature space and the new off-
spring are transformed back into the design space. Regarding the use of the PCA to improve
the prediction accuracy of metamodels, the training patterns, used for the personalized meta-
model of each population member are transformed to the feature space whereas some of the
transformed inputs, those along directions with the smaller variances, are truncated. By doing
so, the metamodels yield improved predictions and the overall algorithm converges faster.

2.2 CFD analysis tool

The CFD analysis tool used in this work is the in-house GPU-accelerated s/w PUMA, [6, 8],
which solves the RANS equations for incompressible fluids using the artificial compressibility
method. The steady residuals of the flow equations read

RUn =
∂f inv

nk

∂xk

− ∂f vis
nk

∂xk

+ Sn = 0 (1)

where Un = [p, v1, v2, v3]
T is the flow variables array with p the kinematic pressure and

vk (k=1, 2, 3) the absolute Cartesian velocity components. The inviscid (f inv
k ), viscous (f vis

k )
fluxes and the source terms (S) are written as

f inv
k =


β2wk

wkv1+pδ1k
wkv2+pδ2k
wkv3+pδ3k

 , f vis
k =


0
τ1k
τ2k
τ3k

 , S=


0

ε1ℓkωℓvk
ε2ℓkωℓvk
ε3ℓkωℓvk

 (2)

where β is a parameter corresponding to a (constant) artificial speed of sound, wk the relative
velocity components, ω the rotational velocity vector and δkm, εiℓk the Kronecker and permu-
tation symbols. The stress tensor is τkm =(ν + νt)

(
∂vk
∂xm

+ ∂vm
∂xk

)
where ν and νt stand for the
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kinematic and turbulent kinematic viscosities, respectively. Eqs. 1 are loosely coupled with the
Spalart-Allmaras turbulence model equation, [9].

The interaction between adjacent rotating and stationary domains (RSI) is modeled using
the mixing plane technique. According to this, in the CFDF tool, the spanwise distribution of
circumferentially averaged (mixed-out) flow variables V̂ = [p̂, v̂r, v̂θ, v̂a]

T is communicated
between the adjacent domains; vr, vθ and va stand for the radial, peripheral and axial compo-
nents of the absolute velocity vector and the hat (ˆ) symbol indicates circumferentially averaged
quantities. Then, using V̂ as well as the flow variables of each domain, the numerical flux to
be imposed at each RSI mesh node is computed. Upon convergence of the flow equations, the
numerical fluxes crossing the interface are conserved.

PUMA implements a vertex–centered finite volume approach on hybrid meshes consisting
of tetrahedra, pyramids, prisms and/or hexahedra. A multi-stage Runge–Kutta scheme with
implicit residual smoothing is used. The inviscid fluxes are discretized using a second-order
Roe’s upwind scheme. The software runs on GPUs with minimal memory requirements and
increased parallel efficiency. This is attributed to the Mixed Precision Arithmetic technique
according to which, the quantities of the left-hand-side are computed in double, though stored
in single precision.

2.3 Shape parameterization and mesh deformation tool

The runner blade shape is controlled using an in-house free-form deformation technique
based on volumetric NURBS, [10]. The same tool also controls the volume mesh deformation,
avoiding the use of a mesh displacement tool. This tool was made for turbomachinery applica-
tions, so it takes periodicity into account and, when updating the blade shape, ensures hub and
shroud axisymmetry. The latter is achieved through an intermediate coordinate system trans-
formation, [10]. The control lattice is primarily defined in the new coordinate system and, then,
transformed into the Cartesian one.

The 11×3×5 NURBS control lattice used to parameterize the runner is shown in Fig. 1. The
coordinates of some of these control points are selected as the design variables. In specific, 9
out of the 11 series of control points in the streamwise direction are allowed to vary in both the
streamwise and pitchwise directions giving rise to 180 design variables in total.

Figure 1: The runner blade enclosed into the NURBS control lattice. Blue points are allowed to vary during the
optimization while red ones remain constant.
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3 DNN-BASED SURROGATE FOR THE MIXING PLANE TECHNIQUE

The hydraulic turbine considered in this work consists of 21 stay, 21 guide vanes, 9 runner
blades and a draft tube, Fig. 2. The optimization aims at minimizing the difference of the max.
and min. pressure (F = [Pmax−Pmin]Probe) at a point (probe) located between the guide vanes
and the runner (at a specified radial and axial position). The temporal variation of this point can
easily be seen as a spatial distribution along the corresponding circumference. Constraints that
(a) retains the torque produced by the turbine and (b) overcomes cavitation on the runner blade
are imposed.

Figure 2: Perspective view of the baseline turbine geometry with the stay vanes (orange), guide vanes (green),
runner blades (blue) and (just the very first part of) the draft tube (ice blue).

Given that all the aforementioned quantities of interest (objective and constraints) result from
flow data computed in the runner domain, the idea is to simulate the flow only in the runner
rather than in the entire turbine. Using the terminology introduced in section 1, the plan is to
use the CFDR (instead of the CFDF), tool within the MAEA-based search. This will reduce the
computational cost of each evaluation and, thus, the overall optimization turnaround time.

To do so, boundary conditions that replicate the presence of the stators (stay and guide vanes)
and the draft tube must be imposed at the inlet and outlet of the runner domain. Since the RSI is
modelled via the mixing plane technique (schematically illustrated in Fig. 3), two DNN–based
surrogates of the RSI are used to predict the distributions of the flow quantities communicated
between the adjacent domains at these interfaces. In specific, the two DNNs undertake the
prediction of the axial distribution of the runner inlet flow variables (DNN1) and the radial one
of the runner exit flow variables (DNN2), Fig. 4.

CFDF

Stay & Guide
Vanes

Runner Draft Tube
RSI1 RSI2

Runner
DNN1 DNN2

CFDR

Figure 3: Schematic representation of the exchange of information (numerical fluxes) between adjacent rotating
and stationary domains at the two interfaces (RSI) in the case of CFDF (top), and CFDR supported by the DNNs
(bottom).
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Figure 4: The radial inflow and axial outflow boundaries of the runner domain. The two interfaces of the runner
with the guide vanes (top) and the draft tube (bottom) along with the zones used for averaging the flow quantities.

3.1 Configuring and training the two DNNs

The first step to be taken is to sample the runner’s blade design space and generate the
database (DBDNN) that the DNN will be trained on. DBDNN should not be confused with the
DBEA supporting the MAEA. For each value set of design variables, corresponding to a dif-
ferent runner geometry, the full turbine (with all the aforementioned components) is simulated
using the the PUMA software. The large number of design variables (180) makes the sampling
procedure challenging. A small number of samples which though ensures that the so-generated
DBDNN is suitable for the DNN training would be ideal. The Latin hypercube sampling tech-
nique is used and three DBDNN sizes consisting of 50, 75 and 100 samples are generated. These
will be denoted as DB50

DNN, DB75
DNN and DB100

DNN, respectively. Later on, the corresponding trained
DNNs will be assessed in terms of cost of the optimization run. Assuming that an evaluation on
the CFDF corresponds to one (1) cost unit, forming the DBDNN costs as many cost units as the
DBDNN size.

The DNN training uses the coordinates of the NURBS’ lattice control points that are al-
lowed to vary as inputs and predicts the distributions of the flow quantities (velocity vector and
pressure) at the RSI, to be used as the inlet and outlet conditions for the runner domain.

In this work, Fully Connected Neural Networks (FCNN) are considered. The hyperparam-
eters of each network result from a (µ, λ) = (10, 30) MAEA-based optimization aiming at
minimizing the DNN prediction error, [1]. The unknowns are the number of layers, the number
of neurons per layer (in powers of 2) and the activation function in each layer. For the latter,
the algorithm has to select among the Rectified Linear Unit (ReLU), Gaussian Error Linear
Units (GELU), hyperbolic tangent (tanh) and sigmoid functions. The DNN setup and training
is carried out in the TensorFlow framework using Python. The Adam optimizer, [11], is used.
The use of an optimization algorithm to define the DNN hyperparameters enhances the DNN
reliability for the upcoming shape optimization. In our case, the overall cost of the optimization
of the hyperparameters of both DNNs, including the training itself, sums up to no more than 2
cost units.

The optimal DNNs configurations are summarized in Table 1. In all cases, the optimization
selected the GELU activation function for all the hidden layers and the sigmoid one for the
output layer. Though the number of layers is not affected by the number of training patterns,
this is not the case for the number of neurons per layer. Nevertheless, the total number of
the trainable parameters of each DNN are comparable. For the DNN1 these are about 20M ,
while for the DNN2 about ∼ 5M (see last column of Table 1). This means that the DNN
hyperparameters could have been optimized only once (for any DBDNN size), followed by an
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independent training for each DBDNN size, since the number of trainable parameters is, more or
less, the same for all optimal configurations. The use of three different DNN architectures was
decided to ensure a fair comparison between the performances of the DNNs during the shape
optimization of the hydraulic turbine in Sec. 4.

Position DBDNN Layers Neurons/Layer Parameters

Inlet (DNN1)
50 7 4096, 4096, 1024, 64, 128, 256, 1024 22M
75 6 2048, 4096, 1024, 4096, 256, 512 19M
100 7 128, 64, 4096, 4096, 256, 1024, 64 22M

Outlet (DNN2)
50 4 2048, 1024, 256, 1024 3M
75 3 1024, 1024, 1024 5M
100 4 2048, 2048, 32, 256 4.5M

Table 1: Optimal configurations for DNN1 (inlet) and DNN2 (outlet).

3.2 Assessment of the trained DNNs

The proposed DNN-based surrogates to the mixing plane conditions are initially applied and
assessed in the baseline geometry. The DNNs trained on the DB50

DNN are selected and used to
predict the velocities and the pressure distributions at the RSI zones of the turbine. These are
compared with those resulted from a CFDF simulation, Fig. 5. The agreement is absolutely
satisfactory; small discrepancies exist in some of the zones of the axial velocity profile at which
values are overestimated by the DNN. The flow simulation in the runner domain using either
CFDF or the DNN (predicted) distributions yield similar objective function values; a percentage
error of about 1.1%, with the DNN overestimating the objective function value is observed.
Overall, the DNNs are considered reliable for use together with the CFDR, in the shape opti-
mization.
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Figure 5: Comparison of the radial, peripheral, axial velocity and pressure (from left to right) between the CFDF

(black) and the DNN prediction (red).

4 SHAPE OPTIMIZATION STUDIES

This section summarizes the shape optimization studies using the proposed DNN-based sur-
rogates for the mixing plane. For the sake of comparison, an additional run simulating the flow
in the entire turbine domain (using CFDF) is also presented. The target is to suppress pressure
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pulsations between the guide vanes and the runner by additionally retaining the torque pro-
duced by the turbine and ensuring that no cavitation occurs on the runner blade. The objective
is quantified by the amplitude of the pressure field defined at a constant radius between the guide
vane-runner interface and the runner leading edge. To avoid cavitation, the optimization should
ensure that the min. pressure over the optimal runner blade exceeds that of the non-cavitated
runner of the baseline geometry; this is a relative, rather than an absolute cavitation criterion.

In all studies, a (µ, λ) = (12, 20) MAEA is used. Its problem-agnostic metamodels (RBF
networks) are activated after at least TMM = 50 evaluations on the problem specific model
(either CFDF or CFDR), provided that at least 30 of them meet the constraints; these are all
archived into the DBEA. The previous criteria ensure that there will be enough data to train
dependable metamodels. In generations that are assisted by metamodels, the best (according to
objective function predictions on a properly trained metamodel) λe∈ [2, 4] population members
are re-evaluated on the PSM; the selection of the λe value is related to the degree constraints
are violated and the accuracy of the metamodels’ prediction. The PCA is activated after the 3rd

generation and the metamodels are trained using the 45 first principal components, pinpointed
by the PCA of the current offspring population.

The computational cost of an evaluation based on CFDF (the entire turbine) is ∼15 min. on
a single A100 NVIDIA GPU (one cost unit). The CFDR simulation that solves only the runner
domain using the DNN-based boundary conditions takes ∼9 min. on the same GPU, i.e. the two
tools have a cost ratio of 0.6. The computational budget for any optimization run is set to 150
cost units; this includes the cost for creating the DBDNN, configuring and training the DNNs.

The convergence histories of all optimization runs as well as a close up view to the opti-
mal (re-evaluated on CFDF) solutions are presented in Fig. 6. The optimization on the CFDF

decreased the objective function by ∼ 61%. Regarding the runs based on CFDR which makes
use of DB50

DNN, DB75
DNN and DB100

DNN a reduction of ∼ 68%, ∼ 65% and ∼ 61% is obtained (after
re-evaluations on the CFDF model), respectively.
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Figure 6: Convergence histories of the MAEA-based optimizations (left); CFDF (black), CFDR with DB50
DNN (red),

DB75
DNN (blue) and DB100

DNN (purple). Cost units from 1 to the beginning of the colored lines correspond to the
evaluation of training patterns, the training of DNNs as well as the cost of the very first MAEA generation. Close-
up view (right) of the end of the optimization in which the optimized solutions are re-evaluated on the CFDF (filled
squares).

The (non-dimensionalized) objective and constraint values of the optimized solutions are
summarized in Table 2. It can be seen that the optimizations relying on CFDR with DB50

DNN and
DB75

DNN outperform the CFDF-based one. With the decided computational budget, the run with
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DB100
DNN does not have enough cost units left for the optimization, given that 102 cost units have

already been spent for populating the DBDNN and training the DNNs. Regarding the cavitation
constraint (second row of Table 2), the minimum pressure on the runner blades resulted from all
optimization runs is higher compared to that of the baseline geometry, i.e. the cavitation risk is
less. As far as the torque constraint is concerned CFDR with DB75

DNN and DB100
DNN yield more or

less the same torque with the baseline geometry, while CFDR with DB50
DNN yields more torque.

In all cases studied with the CFDR, the objective function value is computed with adequate
accuracy; the percentage errors can be found after re-evaluations on the CFDF are 1.7%, 0.3%
and 1.1% for the 50, 75 and 100 training patterns, respectively. The very small error values
confirm that the use of an optimization algorithm to select the DNNs’ hyperparameters (as
described in Sec. 3) is absolutely useful.

Optimization Optimizations on CFDR

on CFDF DB50
DNN DB75

DNN DB100
DNN

Objective 0.388 0.323 0.353 0.394
Min. pressure 1.01 1.24 1.14 1.14
Torque 1.039 1.012 0.994 1.007

Table 2: Comparison of the optimized (within the pre-decided computational budget) solutions resulted from the
optimizations on CFDF and CFDR (the tabulated values of the latter have been computed by means of CFDFre-
evaluations). All quantities are non-dimensionalized by the corresponding values of the baseline geometry. The
objective function (to be minimized) is defined in Sec. 3. The “min. pressure” is a measure for possible cavitation;
this should exceed 1. Figures in bold highlight the best values obtained from the CFDR-based runs.

A comparison of the circumferential pressure distribution, used for computing the objec-
tive function, between the baseline and the optimized from the CFDR model with DB50

DNN, is
presented in Fig. 7. A comparison of the pressure on a constant radius surface used for the
definition of the objective function between the baseline and optimized geometries is shown in
Fig. 8. Apart from the amplitude itself, the pressure values themselves are also decreased in the
optimized geometry.
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Figure 7: Comparison of the circumferential pressure distribution on the baseline (blue) and the optimized by
CFDR with DB50

DNN (red) geometries. Pressure values are non-dimensionalized with the mean pressure value of the
baseline geometry.
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Figure 8: Pressure field on the surface at a constant radius used for the definition of the objective function for the
baseline (top) and the optimized (bottom) geometries.

5 CONCLUSIONS

The shape optimization of a hydraulic turbine assisted by a DNN-based surrogate to the mix-
ing plane technique was presented. The aim was to reduce the number of inter-communicating
domains for which a CFD solution is necessary and, as a consequence, the computational cost
of multi-row CFD simulations. The gain in computational cost was showcased in the shape op-
timization of the runner blades of a hydraulic turbine where the DNNs were used to “simulate”
the presence of the stationary domains namely the stay vanes, the guide vanes and the draft tube.
The DNNs were trained on the coordinates of the control points of the NURBS lattice param-
eterizing the runner blade and deforming the surrounding computational mesh. The averaged
quantities exchanged at the interfaces between stationary and rotating domains were predicted
by the DNNs and used for simulating the flow only in the runner domain. The optimization
studies revealed that the DNN-based surrogate is a reliable tool and when used in the context
of an optimization algorithm may lead to better optimized solution (up to 20%), for a given
computational cost.
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Abstract 

In this paper a methodology is proposed for optimizing the design of a robotic manipulator 

specifically for selective spraying of nutrients in vineyards, a well-defined agricultural task. 

The optimization was based on maximizing the Manipulability Index. A simulator was devel-

oped using robotic software and tools, to assess the performance of each potential robotic con-

figuration in a simulated vineyard. The optimization process utilized the Particle Swarm 

Optimization (PSO) algorithm within a constrained solution space. In addition, XGBoost mod-

els were designed to predict whether a robot configuration could reach all the desired grape 

cluster positions in order to reduce computational time. Results show that the learning models 

were able to correctly classify with average precision of 82.4% and 83.1% for the positive and 

negative classes respectively. The use of the XGBoost model was found to reduce running time 

by 42.7% and therefore greatly benefit the optimization process. Furthermore, several reason-

able optimal configurations of manipulators were provided using the presented approach. 

Overall, this methodology presents a promising approach for optimizing the design of robotic 

manipulators for agricultural tasks, with potential for applications in other industries as well. 

Keywords: Robotic manipulator, Optimal design, Simulation, Evolutionary algorithm, Ma-

chine learning. 

125



R. Azriel and A. Bechar 

1 INTRODUCTION 

Robotic technology has been developed to automate tasks that are repetitive, dull, strenuous, 

or hazardous. Robots could be highly advantageous in performing agricultural tasks like weed-

ing, harvesting, and spraying, for these reasons. However, while robots have been successfully 

implemented in industry, their use in agriculture has been restricted. Industrial environments 

are more predictable and uniform, while agriculture faces a variety of challenges, such as 

weather, terrain, and crops that vary in color, size, and shape and can be easily damaged during 

handling [1-2]. In addition, despite decades of research, commercial crop robot applications 

remain constrained, mainly due to the high cost of existing robots, their maintenance require-

ments, and their limited performance. Nevertheless, there is an economic incentive to use auto-

mation in agriculture, particularly in countries with high labor costs. A possible solution to 

overcome these difficulties is to find a simple robotic arm that is best suited for the task and 

environment in which it will be operated. 

In the previous years, several approaches have been proposed to optimize robot parameters 

based on different performance criteria. Zhou and Bai [3] presented in their study a method for 

optimizing a robotic arm to minimize the weight of the robot with constraints on kinematics 

performance, drive-train, and structural strength. The kinematic performance of the robot was 

indexed by the global conditioning index (GCI). The optimization method was implemented by 

using five modules, including a computer aided design (CAD), a kinematic and dynamic sim-

ulation, a finite element analysis system module, and Complex optimization method. Xiao et al. 

[4] focuses as well on optimizing the total mass but also the manipulability of a robotic arm 

based on non-dominated sorting genetic algorithm and Pareto fronts. The first objective was to 

find the lightest combination of motor and gearbox for all six degrees of freedom (DOF) of 

UR5 robot and the optimal length and thickness of several links that fulfill all constraints asso-

ciated with the motors and gearboxes. The second objective defined as the manipulability of 

UR5 in a given trajectory. 

In this study, the optimal robot is task oriented and aimed to perform the task of nutrients 

spraying table grapes in vineyards. Table grapes have a total production of 23.7 million tons 

per year in Europe only. Gibberellin, a plant hormone, is widely used today in grape production 

at different concentrations during berry development and growth to increase yield, and improve 

quality characteristics of berries and clusters [5]. It is hand sprayed selectively, targeted only to 

the grapefruit, or delivered by hand dipping the grape clusters. This both applications are time-

consuming, labor intensive, inaccurate, and results in major overdoses [6]. The utilization of a 

robotic system would enhance this task by enabling quick and precise delivery. 

This study proposes a methodology for optimizing the structure of task-oriented robotic ma-

nipulator based on XGBoost architecture and Particle Swarm Optimization algorithm (PSO), 

for the task of selectively spraying nutrients in vineyards. The study considers the manipulabil-

ity index as the performance measure, which was constrained by the reachability capacity. To 

collect the necessary data, the Gazebo simulator was employed as the data acquisition tool. 

2 PROBLEM FORMULATION 

2.1 Model description 

The end effector payload is lightweight, so the structure of the robot could be simple in 

design, compact and dexterous. Taking into consideration the characteristics of the robot and 

the work requirements, a serial manipulator structure, a series of links connected by motor-

actuated joints, was adopted for the robot. Upon setting the robot's structure, DOF must be 

determined. Having fewer DOF may simplify the structure, but the robot may not be able to 

126



R. Azriel and A. Bechar 

perform its work adequately. Alternatively, too many DOF would complicate the calculation 

and make controlling the robot more difficult. Therefore, the solution space was limited to ro-

bots with 6 DOF, similarly to industrial robots  exists nowadays. As a derivative, three catego-

ries of independent variables emerge: link lengths, denoted as 𝐿 = [𝑙1, 𝑙2… 𝑙6], joint motion 

types, denoted as 𝐽1 = [𝑗1,1, 𝑗1,2… 𝑗1,6] , and joint movement axes, denoted as 𝐽2 =
[𝑗2,1, 𝑗2,2… 𝑗2,6]. The link lengths considered are [0.1, 0.3, 0.5, 0.7] meters and the joint type 

can either be prismatic (allows linear motion in one direction), roll (revolute joint about the Z-

axis in the element coordinate system) or pitch (revolute joint about the Y-axis in the element 

coordinate system). The movement axis can be X, Y, or Z. Manipulator configuration is there-

fore denoted as 𝑥 = [𝐿, 𝐽1, 𝐽2]. 

2.2 The optimization problem 

The kinematics performance of a robotic manipulator is crucial in its design, and various 

performance indices are available to evaluate the robot's abilities. Designers can use these indi-

ces to assess different designs and select the most suitable manipulator for a given application. 

In the case of agricultural tasks, such as spraying grape clusters, the primary requirement for 

the robot is its manipulation abilities. Since grape clusters are often located in irregular and 

hard-to-reach areas, manipulability is necessary to evaluate the performance of the robot. The 

Manipulability Index presented by Yoshikawa [7], created a mathematical measures for the 

manipulability of any serial robot. The concept of this manipulability index is centered around 

the ability of a robotic arm to position and reorient its end-effector. It also gives information 

regarding the proximity of singular positions, in which the robot's end-effector becomes 

blocked in certain directions. The manipulability index is based on the Jacobian matrix (J) 

which provides the relation between joint velocities and the end-effector velocities, in a certain 

joints angles. The manipulability index for specific position, is calculated as follows: 

𝜇 = √det(𝐽𝐽𝑇) (1) 

The simulation measures the manipulability index for several desired end-effector posi-

tions and orientations. Optimizing the minimum obtained will guarantee the performance. 

Hence for 𝑛 desired positions, the objective function is as follows: 

𝑓1(𝑥) = min(𝜇1(𝑥), 𝜇2(𝑥)…𝜇𝑛(𝑥)) (2) 

Once environmental and conceptual assumptions have been used to condense the solution 

space for this optimization, the remain constraint is maximum reachability (𝑅), meaning the 

robot's ability to reach all desired positions. Reaching single position is denoted as 𝑟𝑖, so the 

constraint:  

𝑅 = ∑ 𝑟𝑖
𝑛
𝑖=1 (3) 

Finally, the optimization problem is defined as: 

max
𝑥

𝑓1(𝑥) (4) 

s. t 𝑅 = 𝑛 (5) 

3 METHODS 

3.1 Simulation 

To evaluate the performance of each robot configuration, Gazebo and RVIZ simulators were 

used with Robot Operating System (ROS), melodic version, and MOVEIT, a motion planning 
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framework of ROS in Linux environment [8]. Those tools enable motion planning, inverse and 

forward kinematics, control, and visualization. The simulation aimed to realistically demon-

strate the execution of a spraying task, using data collected from the experimental vineyard.  

The robot's workspace was affected by the maximum and minimum heights of the grape 

clusters in the vineyard's trees and by the "Y" shaped trellising (Figure 3). The manipulator was 

based on a platform moving orthogonally to trees, with the Y axis being a DOF for the system. 

To simulate the movement of the platform, a beam was added to create a free axis of movement 

(Figure 1). The simulation involved reaching various positions that represented both typical and 

extreme positions of actual grape clusters. 

  

Figure 1: Illustration of the simulation.              Figure 2: The experimental optimization framework. 

  

Figure 3: The experimental vineyard and the prototype system. 

3.2 Optimization framework 

The optimization process is embedded as a design optimization platform containing three 

components: a kinematic simulation to calculate the objective function (as described in section 

3.1), an optimization algorithm that manages the search for the optimal solution and a learning 

model as a threshold condition for testing a potential solution in the simulator.  

This optimization problem is solved by an evolutionary algorithm, Particle swarm optimiza-

tion (PSO), a method suitable for nonlinear problems with complex search space. PSO is a 

stochastic algorithm based on swarm intelligence, initially proposed by Kennedy and Eberhart 

[9]. This approach draws inspiration from the social behavior of animals such as fish schooling 

and bird flocking. The algorithm treats each potential solution to a given problem as a particle 

with a unique velocity, traveling through the problem space. These particles then utilize a com-

bination of their own historical best location and current location, along with those of other 

swarm agents, to determine their next movement through the search space, with some random 
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disturbances added in. This process is repeated for all particles before the next iteration occurs. 

Over time, the swarm as a whole, much like a flock of birds searching for food, is expected to 

gradually approach the optimum of the objective function. This evolutionary algorithm is robust 

and suitable for variety of optimization problems and can converge quickly [10].  

In order to further optimize the performance of the optimization process, a machine learning 

(ML) models, XGBoost architecture, was trained in order to predict by the manipulator config-

uration the success in reaching the desired grape clusters positions. XGBoost, is a gradient 

boosting tree algorithm that achieves state-of-the-art results on numerous tabular datasets. 

XGBoost creates new models from previous models' residuals and then combining them to 

make the final prediction, and uses gradient descent to minimize loss when adding a new model 

[11]. Each XGBoost classifier was trained independently to classify different grape cluster (GC) 

as a target, while reaching it is denoted as the positive class.  

To assess the proposed methodology and the benefits of ML classifiers in terms of runtime 

and objective function score, an initial experiment was performed. This experiment aimed to 

determine the feasibility of utilizing the simulator and PSO to identify an optimal robotic con-

figuration. Additionally, it tested the performance of the same methodology in conjunction with 

the XGBOOST models as a threshold for evaluating potential solutions in the simulator (Figure 

2).The simulation task included reaching ten grape clusters and the objective defined as the 

minimum manipulability index for the ten reaches, for the manipulators succeed reaching them 

all, and zero otherwise. Priorly, the PSO hyperparameters were adjusted using a grid search and 

based on the characteristics of the problem and running time limitations, the number of gener-

ations (iterations) was set to 200.  

Table 1: XGBoost classifiers results.        Figure 4: Manipulators reaching 10 GCs (or classified as such). 

4 RESULTS 

Table 1 displays the average cross-validate performance of the XGBoost trained models. 

The false positive (FP) prediction error involved with missing promising manipulators and can 

lead to missing the optimum. The false negative (FN) prediction error results in runtime costs. 

Furthermore, the datasets utilized to train and evaluate all classifiers was imbalanced. Therefore, 

the most suitable metrics for evaluating the performance of the machine learning models were 

Precision or Positive Predictive Value (PPV) and Negative Predictive Value (NPV). PPV 

measures the ratio of true positive predictions considering all positive predictions. NPV 

measures the ratio of true negative predictions considering all negative predictions. The results 

showed that all models achieved an average PPV of 82.4% and an average NPV of 83.1%. 

Position 

predicted 
NPV PPV 

GC1 0.884 0.862 

GC2 0.865 0.856 

GC3 0.843 0.82 

GC4 0.835 0.827 

GC5 0.85 0.833 

GC6 0.835 0.822 

GC7 0.815 0.804 

GC8 0.819 0.803 

GC9 0.825 0.815 

GC10 0.794 0.795 

Average 0.831 0.824 
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Another analysis was conducted regarding the most critical group of manipulators to identify, 

those that could reach all grape clusters and among them the optimum is found. As shown in 

Figure 4, 83.5% of these promising manipulators were correctly identified, where 5.7%, 3%, 

and 2.2% of them identified with one, two, or three grape clusters errors, respectively. Therefore, 

a threshold was set such that all manipulators predicted to reach at least seven clusters were 

sent to simulation, while the rest received a score of zero for the objective. On the other hand, 

Figure 4 also shows the distribution of the manipulators classified as promising. Only 36.9% of 

them actually reached all the positions, while 20.5% failed to reach any desired location. These 

predictions errors result in runtime expended on unsuccessful manipulators. 

Optimized designs of the robotic manipulator are listed at Table 2, obtained by the experi-

ment described in section 3.2. By combining PSO and XGBoost modules, the objective function 

results obtained was 52.67% higher than using only PSO. The two methodologies yielded dif-

ferent optimal configurations. Incorporating the XGBoost classifier had a significant advantage 

in terms of runtime, reducing processing time by 42.7%. 

PSO PSO and XGBoost 

Kinematic 

serial 

index 

Joint Type Joint Axis Link 

Length [m] 

Joint Type Joint Axis Link 

Length [m] 

1 Roll Z 0.1 Roll Z 0.1 

2 Pitch Y 0.1 Roll Y 0.1 

3 Roll Z 0.7 Roll Y 0.5 

4 Prismatic Z 0.7 Prismatic Z 0.7 

5 Pitch Y 0.1 Pitch Y 0.1 

6 Roll Z 0.1 Pitch X 0.1 

Table 2: Optimal design obtained by PSO with and without XGBoost classifiers. 

5 CONCLUSIONS 

In this study, an integrated approach for finding the optimal design of a task-oriented robot 

manipulator was presented. Selections of the manipulator configuration parameters, joints, and 

links characteristics were formulated as a discrete optimization problem, which was solved by 

non-linear optimization method. Preliminary results show that the methodology proposed can 

achieve an optimal design, while satisfying the constraints of reaching all the desired positions. 

The benefits of the learning model for the optimization process are twofold: 1) The use of 

XGBoost as a threshold for using the simulation accelerate the convergence of the PSO algo-

rithm; 2) By reducing the computational time, at the same number of generations, the swarm 

potentially observes better possible solutions and therefore is expected to find better solutions. 

This methodology can be applicable for finding optimal robotic manipulator for other applica-

tion with similar characteristics. 
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Abstract 

Liquid storage tanks have proven to be efficiently protected by seismic isolation schemes, which 
manage to reduce the distress of the superstructure. However, strong pulse-like ground motions 
generated by near-fault earthquakes can impose excessive displacement demands on the isola-
tors of tanks located in seismic-prone areas. An efficient solution to this problem is the adoption 
of a hybrid system, i.e., elastomeric or friction-based isolators with supplemental passive en-
ergy dissipation devices. The application of multi-objective optimization approaches is suitable 
for such problems that require to include and handle simultaneously several competing objec-
tives, which can be significantly different (i.e., related to time, cost, performance, etc.). In par-
ticular, the combination of single friction pendulum bearings and linear viscous dampers is a 
case that requires the consideration of many design objectives and constraints. Therefore, the 
main aim of this work is to optimize the critical design parameters by achieving a reasonable 
balance among contradicting objectives. The multi-objective genetic algorithm (MOGA) opti-
mizer will be used for the solution of two optimization problems. The results are presented in 
the typical form of two-dimensional, as well as three-dimensional Pareto fronts, while certain 
optimal design solutions are selected and compared in terms of isolators’ fragility curves and 
tank accelerations. 
 
 
Keywords: Multi-Objective Optimization, Liquid Storage Tanks, Seismic Isolation, Seismic 
Vulnerability. 
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1 INTRODUCTION 

Large-scale liquid storage tanks constitute very important infrastructure, as they are widely 
used to safely store and deliver the content of hazardous chemicals and liquids (e.g., water, oil, 
liquefied natural gas). However, in previous earthquakes, such as Northridge (1994), Kobe 
(1995), and Chi-Chi (1999), leakages, explosions and tank wall damages have been observed 
in liquid storage tanks. In general, significant socioeconomic losses, as well as severe environ-
mental problems may result from such failures. Consequently, the maintenance of their struc-
tural integrity in severe earthquakes should be ensured via an efficient seismic design and 
efficient protection methods.  

Base-isolation technology has proven to be an efficient approach to reduce the probability 
of failure of liquid storage tanks [1]. Due to the low horizontal and high vertical flexibility of 
the isolators, although the displacements are increased, while the superstructure’s acceleration 
and stresses are notably reduced. However, the displacement demands may be significantly 
increased when the structure is located in near-fault areas. Two possible solutions can be pro-
posed for the solution of this problem: (a) by selecting isolation devices with large displacement 
capacity (leading to an overconservative and expensive design), or (b) by adding dampers (e.g., 
viscous, friction, etc.) at the base-isolation system [2]. Therefore, if the hybrid system is 
properly designed, an improved seismic performance can be achieved using the latter approach. 

Some relevant studies have examined the multi-objective optimization of the seismic re-
sponse of other type of structures and storage tanks isolated by solely isolators or hybrid sys-
tems. Pourzeynali and Zarif [3] applied multi-objective genetic algorithms (MOGA) to 
optimize base-isolated high-rise buildings. In particular, the main parameters of isolators were 
optimized via non-dominated sorting genetic algorithm (NSGA-II) to minimize the superstruc-
ture and isolators’ displacements. Ozbulut et al. [4] also used a MOGA for the learning process 
of an adaptive neural controller. The scope of this work was to study the adaptive control of 
structures isolated by a hybrid system, consisting of laminated rubber bearings and variable 
friction dampers (VFD). 

Fallah and Zamiri [5] implemented NSGA-II multi-objective optimization scheme to inves-
tigate the seismic response of base-isolated buildings. According to the presented results, the 
optimum values of isolator properties contributed to the substantial improvement of superstruc-
ture’s response. In addition, it was reported that the response of the base-isolated system can be 
improved by the addition of viscous dampers. Labaf et al. [6] examined the multi-objective 
optimal design of a hybrid control system that consisted of a base isolation system and a tuned 
mass damper inerter for the seismic protection of liquid storage tanks. It was shown that impul-
sive and convective displacements, as well as base shear force were reduced more than 80% 
due to the optimal design of the hybrid isolation system. 

In the current investigation, two multi-objective optimization approaches are implemented, 
consisting of three and four objective functions respectively, as well as suitable constraint func-
tions and design variables to deal efficiently with the problem at hand. More specifically, the 
constraint functions are related to isolated system’s damping and period, while the design var-
iables are the friction coefficient, the radius of curvature of isolators and the damping coeffi-
cient of supplemental viscous dampers [9]. Both formulations utilize the multi-objective genetic 
algorithm optimizer, while the results are presented in the form of two-dimensional and three-
dimensional Pareto fronts. The main aim is to optimize of critical design parameters of the 
coupled system by achieving a reasonable balance among contradicting objectives in terms of 
performance and cost.  
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2 BASE-ISOLATED LIQUID STORAGE TANKS 

As aforementioned, the application of base-isolation systems in liquid storage tanks has led 
to the efficient reduction of their seismic distress. However, the numerical modeling of the 
dynamic performance of base-isolated storage tanks is a complex and challenging task. More-
over, it requires a substantial computational effort, especially if the coupled system is simulated 
utilizing detailed 3-D numerical models. For this purpose, the surrogate model initially devel-
oped by Bakalis et al. [7] for fixed-base tanks has been used in this work, as relevant studies in 
the literature (e.g., Guler and Alhan [8]) have proven that simplified models can be efficiently 
used for the dynamic analysis of base-isolated tanks. In this study, two tank geometries are 
examined, i.e., a squat tank with slenderness ratio equal to H/R=0.67 and a slender tank with 
H/R=3. Τhe properties and the implementation of the adopted surrogate models are described 
in authors’ recent work [9]. 

 

  
(a)            (b) 

Figure 1: Numerical models with hybrid isolation of (a) the squat and (b) slender tank. 

As shown in Figure 1, the surrogate model of each tank consists of a beam-column element 
that carries the impulsive mass of the tank. It is supported by rigid beam-spokes, which in turn 
are supported by the hybrid isolation system. The combined base-isolation system consists of 
single friction pendulum bearings (SFPB) and linear viscous dampers. This scheme provides 
an effective way to seismically protect buildings of high importance (e.g., museums, hospitals) 
and other infrastructure (e.g., bridges, liquid storage tanks). In general, the main aim of the 
application of supplemental dampers is: (a) to reduce the isolators’ displacement demand, 
which is increased when the structures are located in near-fault areas, (b) to minimize the su-
perstructure accelerations, and (c) to achieve a more cost-efficient design of the isolation system. 

An iterative approach is utilized for the determination of isolation system parameters (e.g., 
effective stiffness, Keff, effective damping, βeff, etc.) for a certain friction coefficient, μ, and 
radius of curvature, R, for 61 and 25 SFPB devices installed at the squat and slender storage 
tank, respectively. For the design of hybrid-isolated storage tanks, the equivalent linear force 
(ELF) procedure is used following the recommendations of Eurocode 8 (Soil A, γi=1.6, 
ag=0.36g). In addition, viscous dampers are placed in parallel with the isolators, i.e., equal num-
ber of isolators and viscous dampers are applied, based on engineering practice (e.g., Lafontaine 
et al. [10]). The damper coefficient, c, for each damper is derived by [11]: 

 𝑛 ∙ 𝑐 2 ∙ 𝜁 ∙ 𝜔 ∙ 𝑚 2 ∙ 𝜁
∙

∙ 𝑚 ⇒ 𝑐
∙ ∙    (1) 

where n is the number of SFPB isolators, ζ is the percentage of supplemental damping [%], kisol 
is the isolator stiffness [N/m], and m is the liquid mass [kg]. According to Taylor [12], the 
vertical stiffness of the dampers is quite high. 
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3 DYNAMIC ANALYSIS AND EARTHQUAKE SELECTION 

The two storage tanks supported on SFPB isolators and linear viscous dampers are modeled 
utilizing SAP2000 structural analysis software [13]. In addition, the Application Programming 
Interface (API) provided by SAP2000 is combined with MATLAB software [14]. In this man-
ner, all required steps for the dynamic analyses (e.g., surrogate modeling, ground motion scal-
ing, processing of the results, etc.) can be efficiently performed. Table 1 lists the twenty ground 
motions taken from the near-fault database of FEMA/SAC Steel project (https://nisee.berke-
ley.edu/elibrary/files/documents/data/strong_motion/sacsteel/motions/nearfault.html). This set 
is used to test the hybrid isolation system under large-pulse excitations. 

 

No SAC Ref Record 
Moment 

Magnitude
Distance 

(km) 
PGA 
(g) 

PGV 
(m/s)

#1 NF01 Tabas, 1978 7.4 1.2 0.90 1.13 
#2 

NF03 
Loma Prieta, 1989, Los 

Gatos
7 3.5 0.72 1.36 

#3 
NF05 

Loma Prieta, 1989, Lex. 
Dam

7 6.3 0.69 1.54 

#4 
NF07 

C. Mendocino, 1992, Pe-
trolia

7.1 8.5 0.64 1.41 

#5 NF09 Erzincan, 1992 6.7 2 0.43 0.85 
#6 NF11 Landers, 1992 7.3 1.1 0.71 0.95 
#7 NF13 Northridge, 1994, Rinaldi 6.7 7.5 0.89 1.38 
#8 

NF15 
Northridge, 1994, Olive 

View
6.7 6.4 0.73 1.01 

#9 NF17 Kobe, 1995 6.9 3.4 1.09 1.68 
#10 NF19 Kobe, 1995, Takatori 6.9 4.3 0.79 1.70 
#11 NF21 Elysian Park 1 7.1 17.5 0.86 1.01 
#12 NF23 Elysian Park 2 7.1 10.7 1.80 3.16 
#13 NF25 Elysian Park 3 7.1 11.2 1.01 1.93 
#14 NF27 Elysian Park 4 7.1 13.2 0.92 2.40 
#15 NF29 Elysian Park 5 7.1 13.7 1.16 3.11 
#16 NF31 Palos Verdes 1 7.1 1.5 0.97 2.71 
#17 NF33 Palos Verdes 2 7.1 1.5 0.97 2.64 
#18 NF35 Palos Verdes 3 7.1 1.5 0.87 2.15 
#19 NF37 Palos Verdes 4 7.1 1.5 0.79 1.71 
#20 NF39 Palos Verdes 5 7.1 1.5 0.92 2.26 

Table 1: List of the imposed near-fault accelerograms. 

Regarding dynamic analysis, the computational efficient Fast-Nonlinear Analysis (FNA) is 
used in the present investigation. According to Sorace and Terenzi [15], FNA is ideal for struc-
tural systems in which the main non-linear response is related to the base-isolation system, 
while the superstructure’s response remains elastic. In addition, the imposed ground motions 
are scaled utilizing the incremental dynamic analysis (IDA) method [16]. Peak ground acceler-
ation is selected for the scaling, as previous studies (e.g., [17]) have considered it as a reliable 
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intensity measure (IM) for liquid storage tanks. Furthermore, the damping is set as 5% for the 
ultimate limit state of the tank [18], while for the impulsive liquid component is equal to 2%. 

In this work, the fragility curves estimation are based on the methodology of fragility func-
tion fitting provided by Baker [19]. They are computed in terms of SFPB maximum displace-
ment limit (i.e., 0.305m) for the Maximum Credible Earthquake (MCE) with 2% probability of 
exceedance in 50 years. SFPB isolators are modeled in SAP2000 program using the “Friction 
isolator” non-linear link element, which is capable of representing the SFPB behavior in a re-
alistic manner. Regarding viscous damper, the “Exponential Maxwell damper” element is used, 
as it is capable of simulating the operation of the supplemental device. Linear viscous damper 
are selected, since the use of non-linear dampers does not affect considerably the results [20]. 

4 MULTI-OBJECTIVE  OPTIMIZATION FORMULATION 

In general, multi-objective optimization approaches can be more suitable than single-objec-
tive formulations, as the majority of real-life problems includes more than one design objectives. 
When considering competitive objective functions, a set of Pareto optimal solutions can be 
derived. Therefore, the selection among these solutions is achieved, by suitable trade-offs 
among the objectives, i.e., proper weight factors can be assigned to each optimization criterion 
and classify some Pareto solutions as more “attractive” to others. Consequently, the selection 
among Pareto results, as well as the use of multi-objective optimization approaches can be sig-
nificantly beneficial in achieving cost-efficient design of hybrid isolation systems [9]. 

In the present investigation the multi-objective genetic algorithm (MOGA) is used, which is 
applied utilizing MATLAB optimization toolbox [14]). More specifically, two multi-objective 
optimization formulations, namely MOGA1 and MOGA2, are presented for the determination 
of the optimum parameters of the hybrid-isolation system. MOGA1 and MOGA2 include three 
and four objective functions respectively, since in MOGA2 the SFPB cost function is added in 
the formulation of MOGA1. The initial setup parameters of MOGA are presented in Table 2. 
The results are related to friction coefficient, radius of curvature, and damping coefficient for 
the two tanks. Regarding the design variables for SFPB isolators, the friction coefficient ranges 
from 0.01 to 0.12, and the radius of curvature ranges from 0.2032m to 6.0452m. Furthermore, 
following the recommendations of Providakis [11], the supplemental viscous damping ranges 
from 5% to 30%. 

 
Parameter Selected Value / Function 

Population size 200
Creation function Constraint dependent 
Mutation function Constraint dependent 

Selection Tournament 
Crossover fraction 0.8

Maximum generations 2000 

Table 2: Setup parameters of MOGA. 

Regarding the objective functions, the first is related to damping. In particular, the integra-
tion of Equation (2) (isolator effective stiffness, Keff [N/m]) with Equation (3) (damping coeffi-
cient, cVD [Ns/m]):  

 
𝐾 𝜇 ∙       (2) 

 
𝑐 2 ∙ 𝜉 ∙ 𝐾 ∙ 𝑚     (3) 
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leads to Equation (4) that describes the first objective function to be maximized [11]: 
 

𝑐 2 ∙ 𝜉 ∙ 𝜇 ∙ ∙ 𝑚     (4) 

 
where ξ is the supplemental viscous damping [%], W denotes the weight of the tank [N], μ is 
the friction coefficient, D refers to the maximum bearing displacement [m], R denotes the radius 
of curvature [m] and, m is the tank-liquid mass [kg]. 

In addition, the minimization of accelerations, a [m/s2], transmitted to the superstructure sets 
the second objective function [21]: 

 
𝑎 𝜇 ∙ 𝑔      (5) 

 
where g is the gravity of the Earth [m/s2]. The minimization of maximum velocities developed 
at the SFPB devices, vmax [m/s] is the aim of the third objective function [22]: 

𝑣

∙

      (6) 

 
which is derived by combining Equations (7) and (8): 

 
𝑣

∙ ∙        (7) 

𝑇 2 ∙ 𝜋 ∙
∙

     (8) 

 
 

where TSFPB represents the isolation period of SFPB isolators. 
Lastly, the cost of SFPB isolators constitutes the fourth objective function, which is included 

only in the case of MOGA2 formulation [23]: 
 

𝑐 exp 𝑎 𝑅 ∙ 𝐷 100      (9) 
 

where, a(R)=0.0002∙R2-0.0014∙R+0.0056. The aim of this criterion is to examine the impact of 
the incorporation of the significant parameter of isolators cost in the multi-objective optimiza-
tion formulation. 
 
Constraint 1. The isolators damping, βeff, refers to the first constraint. In addition, damping 
should be within certain limits following the recommendations of seismic provisions [24]: 
 

𝛽
∙

∙
  and 0.2 𝛽 0.3        (10) 

 

where DD is the isolator design displacement, (equal to 0.1m), based on Eurocode 8 guidelines 
[25]. By analyzing the lower and the upper bounds in Equation (10), the following two con-
straints are derived: 

𝛽 0.3   ⇒    
∙

∙
0.3  ⇒     𝜇

. ∙ ∙

∙ . ∙
0   (11) 
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𝛽 0.2  ⇒    
∙

∙
0.2    ⇒     

. ∙ ∙

∙ . ∙
𝜇 0   (12) 

 
Constraint 2. The period of the isolated superstructure is the second constraint of the optimi-
zation formulation:  
 

𝑇 2 ∙ 𝜋
∙

  and 2 𝑠 𝑇 3 𝑠    (13) 

 
which as previously is transformed into two constraints: 
 

𝑇 2 𝑠 ⇒ 𝜇 𝐷 ∙ 0 (14) 

𝑇 3 𝑠 ⇒ 𝐷 ∙
. ∙

𝜇 0 (15) 

 
Constraint 3. Lastly, the third constraints is related to the re-centering capability of SFPB iso-
lators [26]: 

𝜇 0      (16) 

5 RESULTS 

5.1 MOGA1 Optimization results 

In this section, the results of MOGA1 approach are briefly presented. In particular, the 3D 
Pareto front results are depicted in Figure 2. In addition, four optimum design (OD) levels (OD1, 
OD2, OD3, OD4) are selected to investigate the impact of the optimized hybrid isolation ap-
proach on the seismic response of squat and slender tanks. More specifically, OD1 and OD3 
focus on optimizing the criterion related to acceleration and damping, respectively. Furthermore, 
OD2 and OD4 refer to two more balanced optimal solutions. Figure 2 highlights more clearly 
the differences among the selected OD solutions, while Table 3 presents the design variable 
values as well as the three objective functions MOGA1. Notable variations can be observed 
among the Pareto results of both tanks, which affect the isolation and superstructure perfor-
mance. 

 
 μ R [m] ξ [%] cVD [kNs/m] vmax [m/s] a [m/s2] 

Squat 
tank 

OD1 0.037 2.72 11 167.61 0.14 1.46 
OD2 0.041 1.75 16.5 280.12 0.12 2.11 
OD3 0.047 1.31 30 566.67 0.1 2.75 
OD4 0.044 2.28 25 408.62 0.13 1.75 

Slender 
tank 

OD1 0.038 2.78 9 110.62 0.14 1.45 
OD2 0.05 1.89 12 170.30 0.12 2.07 
OD3 0.046 1.22 28 431.87 0.1 2.9 
OD4 0.040 1.60 26 361.06 0.11 2.26 

Table 3: Optimization results of MOGA1 selected solutions. 

Regarding fragility curves, Figure 3 presents the results for each tank in terms of isolators’ 
displacement capacity. More specifically, the highest probabilities of exceedance for squat and 
slender tanks are presented by OD1 design, while slightly better results are produced by OD2. 
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It can be noticed that the best fragility results of the optimized hybrid schemes are derived for 
the OD3 design. In particular, the probabilities of exceedance – especially for PGA from 0.4g 
to approximately 1g – are significantly lower compared to the other two approaches for both 
tank slenderness ratios. In addition, quite different fragility results are obtained for OD4, as the 
probability of exceedance is higher for PGA from 0 to 0.3g, while fragility results become 
progressively better than OD1, OD2 and OD3 for high PGA levels. 

 

 
 

     
 
 
 
 
 
 

(a) 

 
 

   

(b) 

Figure 2: MOGA1 three- and two-dimensional representation of Pareto front results for: (a) the squat and (b) the 
slender tank. 
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(a)                                                                                (b) 

Figure 3: Fragility curves derived from MOGA1 designs for: (a) the squat and (b) the slender tank. 

Figure 3 also illustrates the fragility curves of conventionally designed hybrid isolated stor-
age tanks presented in authors’ previous study [27]. The comparison with the results derived 
from optimized configurations reveals that OD3 design presents almost identical fragility 
curves with the case of 30% supplemental damping for both tank slenderness ratios. This find-
ing validates the main goal of OD3 design, which prioritizes damping maximization as close to 
the upper bound (i.e., 30%) as possible. Regarding slender tank (Figure 3b) the 20% curve is 
almost identical to OD3 and 30% curves. In addition, similar results are observed for 5%, 10% 
and OD2, which forms a group of two sets of results.  

 

 
(a) 

 
(b) 

Figure 4: Base acceleration values derived from MOGA1 solutions for: (a) the squat and (b) the slender tank. 

The accelerations transmitted to the superstructure are compared in Figure 4. As aforemen-
tioned, accelerations are significantly reduced due to the presence of the base-isolation com-
bined with supplemental dampers. It should be noted that the results presented for all the 
examined optimized, as well as conventional hybrid designs, correspond to the maximum im-
posed values for every excitation. Consequently, it is shown that the frequency content of each 
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near-fault excitation, has significant impact on tank base accelerations depending also on the 
selected Pareto solution. In particular, OD1 design presents the lowest acceleration values, 
while slightly higher accelerations are exhibited in the case of OD2. Moreover, OD3 presents 
notably higher values for certain accelerograms. High acceleration results are obtained for OD4 
solution for both squat and slender tanks, especially for accelerogram #8 (i.e., NF15 – 
Northridge record). When compared to conventional supplemental viscous damping designs, 
OD3 results present similar values with conventional design results with 30% supplemental 
damping. On the other hand, OD1 results are identical to 5% supplemental damping (i.e., the 
lowest level) for both tank slenderness ratios.  

5.2 MOGA2 Optimization results 

As aforementioned, four objective functions are included in the proposed MOGA2 approach. 
More specifically, in addition to the three objective functions of MOGA1, the cost function is 
added to enhance the cost-effectiveness of the multi-objective formulation. Table 4 and Figure 
5 present the Pareto front results divided into three zones (low, medium, upper) for a better 
representation of the solutions of such complex multi-objective implementation. As previously, 
several solutions are selected and compared in terms of fragility curves and superstructure ac-
celerations. More specifically, three optimized solutions are selected for the low (LL, LM, and 
LR) and medium (ML, MM, and MR) zone, and two for the upper zone (HL and HR).  

 
 Optimized Level μ R [m] ξ [%] cVD [kNs/m] 

Squat 
tank 

LL 0.027 2.52 12 171.42 
LM 0.028 1.98 23.9 362.91 
LR 0.042 1.66 29.6 512.33 
ML 0.045 2.27 7.2 118.69 
MM 0.051 1.90 22.3 394.83 
MR 0.056 1.39 26.3 512.90 
HL 0.065 1.48 20.2 219.98 
HR 0.064 1.45 11 404.61 

Slender 
tank 

LL 0.025 2.76 11 122.50 
LM 0.036 2.04 24.6 313.26 
LR 0.036 1.61 30 406.03 
ML 0.044 2.12 19 253.57 
MM 0.052 1.73 25 365.71 
MR 0.044 1.29 23 345.73 
HL 0.056 1.22 30 387.98 
HR 0.061 1.35 24 485.19 

Table 4: Optimization results of MOGA2 selected solutions. 

Figure 6 depicts the fragility curves of the selected MOGA2 designs, in which significant 
differences are observed depending on tank slenderness ratio and the selected Pareto solution. 
In particular, the squat tank results present more scattered curves, and the best fragility results 
derive from LR and MR designs (Figure 6a). In contrast, the slender tank fragility curves exhibit 
a quite different behavior for the same designs (Figure 6b). In addition, a comparison between 
two Pareto solutions derived from the two multi-objective optimization approaches are pre-
sented in Figure 7. A similar trend can be observed, as OD3 design produces better fragility 
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results for PGA less than 0.6g and 0.5g for the squat and the slender tank, respectively. On the 
other hand, LR presents slightly better results for higher PGA levels. This is an indication that 
MOGA2 approach is preferable for high seismic intensity levels, as safer and more cost-effi-
cient solutions are derived. Regarding base accelerations, Figure 8 illustrates the obtained re-
sults for the selected MOGA2 designs. Figure 8a refers to squat tank and it can be seen that ML 
and LL designs produce the lowest acceleration results, while LL, ML and LM solutions present 
the lowest values in the case of the slender tank, as presented in Figure 8b.  

 

 
(a) 

 
(b) 

Figure 5: MOGA2 Pareto front results for: (a) the squat and (b) the slender tank. 
 

   

(a)                           (b) 

Figure 6: Fragility curves derived from MOGA1 designs for: (a) the squat and (b) the slender tank. 
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(a)                                 (b) 

Figure 7: MOGA1 and MOGA2 fragility curves comparison for: (a) the squat and (b) the slender tank. 
 

 
(a) 

 
(b) 

Figure 8: Base acceleration values derived from MOGA2 solutions for: (a) the squat and (b) the slender tank. 

6 CONCLUSIONS 

In this work, two novel multi-objective optimization formulations have been presented to 
improve the seismic performance of hybrid-isolated liquid storage tanks. The examined squat 
and slender tanks have been equipped with SFPB isolators in combination with supplemental 
linear viscous dampers. The isolation system is optimized in an efficient multi-criteria manner. 
More specifically, the MOGA1 optimization formulation consists of three objective functions, 
while MOGA2 included an additional objective function related to SFPB cost. The design var-
iables for both approaches are related to the friction coefficient, radius of curvature and the 
percentage of supplemental damping. In addition, the isolators effective period and damping, 
combined with the re-centering capability of friction devices are adopted as constraint functions.  

An efficient multi-objective genetic algorithm (MOGA) optimizer has been applied to per-
form optimization calculations for both formulations. The results have been presented in terms 
of isolators fragility curves and accelerations transmitted to the superstructure for both tank 

143



Alexandros Tsipianitis & Yiannis Tsompanakis 

 

slenderness ratios. Moreover, comparisons have been made with conventionally designed hy-
brid systems (i.e., without performing any optimization). The following conclusions can be 
derived from the present investigation: 

 MOGA constitutes an efficient optimization method for complex real-life problems, 
such as base-isolated liquid storage tanks with supplemental damping. 

 Regarding MOGA1 approach, the best fragility results derived from OD3 design, while 
OD1 produced the lowest base accelerations. OD2 design is selected as the most effi-
cient approach due to the optimal balance between fragility results and the transmitted 
base accelerations. 

 Regarding MOGA2 approach the best fragility results have been derived from the HR 
design, while LL presented the lowest accelerations transmitted to the superstructure. 
However, the most efficient approach considering the best fragility curves and the lower 
base accelerations is the LM design.  

 The comparison of the proposed MOGA1 and MOGA2 optimization approaches has 
shown that MOGA2 is slightly superior to MOGA1 for high seismic intensity levels 
(i.e., greater than 0.5g) and vice versa. 
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Abstract 

This paper presents a comparison among efficient techniques for uncertainty quantification on 

the RAE2822 airfoil whose shape is affected by uncertain geometrical parameters. Transonic 

conditions are considered with focus on estimating the statistics of the aerodynamic coefficients 

predicted by RANS simulations and using a far-field drag analysis of the computed flow field. 

Generalized polynomial chaos expansion with least-square approximation is employed for sto-

chastic surrogate modelling. Two different kind of approaches enabling the high-dimensional-

ity of the uncertainty space are investigated: ‘compressed sensing’ through Least Angle 

Regression and Basis Pursuit Denoising methods, and the ‘gradient enhanced’ formulation of 

the least-square approach exploiting the adjoint capabilities of modern CFD solvers.   

 

Keywords: transonic airfoil, CFD, geometric uncertainty, polynomial chaos, compressed 

sensing, adjoint gradient-enhancement.  
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1 INTRODUCTION 

During the last decades, computing power has largely increased, contributing to make Compu-

tational Fluid Dynamics (CFD) a quite mature tool for industrial design, widely exploited for var-

ious applications, especially in the aeronautical sector. However, the awareness of discrepancies 

between the ideal conditions of numerical simulations and the real ones has motivated the increas-

ing attention towards sensitivities of classical optimal shapes to uncertain parameters robust design 

techniques [9] and robust design techniques [10]. 

These uncertainties are usually of two kinds: epistemic and aleatory. The first one originates in 

our lack of knowledge in the modelling of the physical phenomena. In this context, Uncertainty 

Quantification (UQ) can help making our physical models more reliable. The second type is related 

to the variability in shape or flow conditions and although it cannot be controlled, it still needs to 

be considered in the design process. For example, deviations of real aerodynamic shapes from their 

reference design are often encountered, not only due to manufacturing tolerances but also to tem-

porary and permanent degradation of aerodynamic surfaces along their lifespan. 

Consequently, to be able to provide a robust aerodynamic shape by numerical optimization, 

uncertainties must be integrated in the design process. The state of the art of shape optimization 

provides, with the adjoint approach, the capability to tackle high dimensional design space [11]. 

However, on the other hand, the number of uncertain inputs can also become significantly large 

and, today, for such complex cases treated with High-Fidelity (HiFi) CFD, designers are strug-

gling with what is known as the “curse of dimensionality”. This curse represents the main bot-

tleneck for the widespread application of UQ techniques in the industrial framework.  

The main focus of this paper will be on efficient polynomial chaos techniques which can 

afford a reduced number of expensive CFD computations: compressed sensing (Least Angle 

Regression [3], Basis Pursuit Denoising [12]) and adjoint-gradient enhanced variants [8], [9] of 

the standard least-square approximation. Their implementation will mainly rely on the func-

tionalities already available in the open-source toolboxes OpenTURNS [5] 

(http://openturns.github.io/) and eQuadrature [4] (https://equadratures.org/). These techniques 

will be compared on the a realistic design test case represented by a transonic airfoil whose 

shape design parameters are considered uncertain with focus on efficiently estimating the sta-

tistics associated with its aerodynamic coefficients.   

2 METHODOLOGY 

Polynomial Chaos Expansion is a well establish approach [1] to derive a surrogate model ap-

proximating a function of interest 𝑓(𝒙) in the form of multivariate polynomials 𝐻𝒋(𝒙): 

 

𝑓(𝒙) = ∑ 𝑐𝒋𝐻𝒋(𝒙),

∞

𝒋

 
 

(1) 

 

where 𝒙 is a d-dimensional vector of independent random variables, j the multi-index associ-

ated with univariate polynomials and 𝑐𝒋 the polynomial coefficients. The polynomial expansion 

 {Hj(x)}
j=0

∞
 is chosen as a complete orthogonal basis with respect to the inner product associated 

with the joint Probability Density Function (PDF) of 𝒙, 𝜌(𝒙): 

 

〈𝐻𝒋, 𝐻𝒌〉 =  ∫ 𝐻𝒋(𝒙) 𝜌(𝒙)𝐻𝒌(𝒙) =  𝛿𝒋,𝒌, (2) 
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with (𝒙) =  ∏ 𝜌𝑖(𝑥𝑖)
𝑑
𝑖=1  , 𝜌𝑖

(𝑥𝑖) being the marginal probability density function characterizing 

the ith uncertain variable 𝑥𝑖. Different truncation rules, e.g. total order or a hyperbolic cross [1], 

can be applied to Eq. (1), resulting in a different definition of the multi-index set 𝐽 spanned by 

j: 

𝑓(𝒙) = ∑ 𝑐𝒋𝐻𝒋(𝒙).

𝐽

𝒋

 

 

(3) 

 

In the present paper, the total order rule is adopted by fixing a common maximum degree 𝑝 for 

all the polynomial terms: 

 

|𝒋| =  ∑ 𝑗𝑖

𝑑

𝑖=1

 ≤ 𝑝, 
 

(4) 

 

which leads to a total number n of polynomial terms (and hence of coefficients) to be deter-

mined given by n =  (p + d)! (p! d!)⁄ . The PCE coefficients can be computed by various meth-

ods. In particular, when considering non-intrusive techniques, the different approaches can be 

essentially divided into two families: i) Spectral projection methods, where the coefficients are 

computed by the numerical approximation of the projection of 𝑓(𝒙) on the orthogonal polyno-

mial basis using classical Gauss quadrature and their more efficient sparse versions [13]. ii) 

Collocation methods, where the PCE coefficients are computed by fitting Eq. (1) to a given 

number of collocation points in the uncertain space, to best reproduce the exact function value: 

 

[
𝐻𝟎(𝒙1) … 𝐻𝒏(𝒙1)

⋮ ⋱ ⋮
𝐻𝟎(𝒙𝑁) ⋯ 𝐻𝒏(𝒙𝑁)

] (

𝑐𝟎

⋮
𝑐𝒏

) =  (
𝑓(𝒙1)

⋮
𝑓(𝒙𝑁)

), 
 

(5) 

 

that can be written as 𝐴𝒄 = 𝒃 in compact form. Oversampling up to 2n is often employed to 

satisfy the full-rank condition for the above matrix, resulting in a classical Least Square Ap-

proximation (LSA) of the PCE solution. This is equivalent to seek an approximation for the 

PCE coefficients in the form of an l2-minimization problem: 

 

𝒄 = 𝑎𝑟𝑔𝑚𝑖𝑛 ‖𝐴𝒄 − 𝒃‖2. (6) 

2.1 Gradient-enhanced LSA  

When gradient information is available, it can be used to introduce additional equations for 

the considered collations points while reducing their number in order to achieve full rank. In 

this case, the LSA system in Eq. (6) assumes the following form: 

 

[
𝐴(0)

⋮

𝐴(𝑑)

] (

𝑐𝟎

⋮
𝑐𝒏

) = (
𝒃(0)

⋮

𝒃(𝑑)

), 
 

(7) 

   

with:  
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𝐴(𝑗) = [
𝐻𝟎

(𝑗)
(𝒙1) ⋯ 𝐻𝒏

(𝑗)(𝒙𝑁)

⋮ ⋱ ⋮

𝐻𝟎
(𝑗)

(𝒙1) … 𝐻𝒏
(𝑗)(𝒙𝑁⋯)

] ,             𝒃(𝑗) = (
𝑓(𝑗)

(𝒙1)

⋮

𝑓(𝑗)
(𝒙𝑁)

), 

 

(8) 

 

Where 𝐴(0) =  𝐴  and𝐴(0) =  𝐴 𝐻𝒌
(𝑗)

 =  𝜕𝐻𝒌 𝜕𝑥j⁄  for 𝑗 ≥ 1𝑗 ≥ 1. Since the gradient at each 

collocation point provides d additional scalar information, the total number of samples can be 

ideally reduced by the same factor with respect to the standard LSA formulation. However, 

attention has to be paid to accuracy issues in computing the derivative information, as often 

occurs for adjoint solvers employed in CFD applications. In order to reduce the sensitivity from 

numerical noise affecting the gradient accuracy, a null-space method has been proposed in [2] 

showing how this approach can achieve improved accuracy, especially for standard deviation, 

on a turbomachinery test case. The same method as implemented in the eQuadratures toolbox 

is employed here to compute the solution of the Gradient-Enhanced LSA problem (LSA-GE) 

presented in Eq. (7).          

2.2 Compressed sensing techniques  

When dealing with very limited amount of data (e.g. as a direct consequence of expensive 

function evaluations) resulting in an underdetermined system for Eq. (1), an alternative solution 

can be sought in a sparse form, i.e. by minimizing the number of non-zero entries of 𝒄: 

 

𝒄 = 𝑎𝑟𝑔𝑚𝑖𝑛 ‖𝒄‖0   𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡  ‖𝐴𝒄 − 𝒃‖2  ≤ 휀, (9) 

 

where 휀 ≥  0 is a given tolerance on the interpolation condition and ‖𝒄‖0 denotes the l0 norm 

of 𝒄. Indeed, although real PCE models are not truly sparse, they are expected to be compress-

ible, i.e. to feature a rapid decay in the magnitude of the coefficients at increasing order of the 

expansion, with most of the variance being captured by a few terms. This provides the rational 

behind the compressed sensing approach. Unfortunately, the cost of solving Eq. (9) grows ex-

ponentially with d and a convex relaxation based on l1-minimization is often considered in 

practice. When 휀 = 0 this is also referred to as Basis Pursuit Denoising (BPDN) which leads to 

solve the following problem: 

 

𝒄 = 𝑎𝑟𝑔𝑚𝑖𝑛 ‖𝒄‖1   𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡  ‖𝐴𝒄 − 𝒃‖2  = 0, (10) 

 

using convex optimization algorithm. Besides convex optimization solvers, greedy methods 

have also been proposed to find a sparse PCE solution [1]. In these methods regressors are 

added to the model one by one according to some selection criterion, to find a heuristic solution 

to the burdensome l0 minimization problem. An example is represented by LARS [3] where the 

regressors are added according to their correlation with the current residual and the PCE coef-

ficients are then updated using a least angle strategy. It should be noted that LARS with the 

LASSO (Least Absolute Shrinkage and Selection Operator) modification can be interpreted as 

a l1-optimization solver. Both techniques, BPDN and LARS will be considered in the present 

study. In particular, for LARS, the implementation available in the open-source library Open-

TURNS [5] is employed.   

3 THE RAE2822 TEST CASE 

The considered test case is represented by the compressible viscous flow around the 

RAE2822 airfoil at transonic conditions: Mach number of 0.725, Reynolds number of 6.5e6, 
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and angle of attack of 2.55°: these conditions corresponds to the AGARD test case 7 [15]. The 

RANS solution is computed by using the elsA software [6] (ONERA-SAFRAN property) on a 

structured grid with a CH topology featuring a total of ~8e5 cells and near-wall resolution of 

𝑦+~ 1.0. The CFD solution is converged down to 7 orders of magnitude in the decrease of the 

residual. The employed mesh and the computed Mach field are illustrated in Figure 1. 

 

  
Figure 1: Computed Mach field for the transonic flow around the RAE2822 (right) and employed structured 

mesh (left). 

   

A far-field drag analysis [7] is applied to CFD results in order to extract the different phenom-

enological sources of drag. In particular, the far-field estimation of the total drag coefficient 

CDff and the wave drag coefficient, CDw, are considered as Quantity of Interest (QoI) for the 

present UQ analysis, in addition to the lift, CL, and pitching moment, CMy, coefficients. Cor-

responding values for the reference airfoil geometry and the considered flight conditions are 

reported in Table 1.  

 

 

CL CDff CDw CMy 

0.8076 139.37 24.20 -0.09465 
Table 1: Computed values of the aerodynamic coefficients for the RAE2822 airfoil at considered transonic con-

ditions. Drag coefficient values are reported in drag counts. 

 

3.1 Uncertain shape parameterization 

The airfoil shape is parameterized by means of both camber and thickness parameters at five 

different positions uniformly distributed along the chord, i.e. at 16.7%, 33.3%, 50%, 66.7%, 

83.3%, as illustrated in Figure 2. The deviation of each parameter from its corresponding base-

line value is assumed to follow a zero-mean β distribution. The convention used to define the 

probability density function of the β distribution is recalled Eq. (11):  

 

𝑓𝑋(𝑥) =
(𝑥−𝑎)𝛼−1(𝑏−𝑥)𝛽−1

(𝑏−𝑎)𝛼+𝛽−1𝐵(𝛼,𝛽)
       with 𝑥 ∈ [𝑎, 𝑏] and 𝐵 being the Euler’s β function 

(11) 

 

For all camber parameters the same value of variance is employed. The same assumption ap-

plies to the thickness parameters. Two different levels of amplitude, namely Ω1 and Ω2 are 
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considered for the uncertain perturbations: the associated sets of β-PDF parameters are reported 

in Table 2, while a representation of the envelope of the resulting airfoil shape is illustrated in 

Figure 3 and Figure 4 for Ω1 and Ω2 cases, respectively. Not surprisingly, the envelope is wider 

for Ω2 and as a consequence, the pressure coefficient distribution shows quite large deviations 

from the reference results, especially affecting the shock position on the suction side of the 

airfoil, as illustrated in Figure 4. For each realization of the uncertain design parameters, a mesh 

deformation process is used to adapt the baseline airfoil mesh and re-run CFD computations for 

both primal and adjoint analysis.  

 

 
Figure 2: RAE2822 baseline airfoil geometry (light blue line) and position of the control points used to modify 

the camber and thickness laws (orange makers and line). 

 

 
 

standard  
deviation 

shape pa-

rameter 

α=β 

lower bound 

(a) 

upper 

bound (b) 

Ω1 
camber 0.5E-3 4 -1.5E-3 +1.5E-3 

thickness 1.0E-2 4 -3.0E-2 +3.0E-2 

Ω2 
camber 3.0E-3 4 -9.0E-3 +9.0E-3 

thickness 6.0E-2 4 -18.0E-2 +18.0E-2 
Table 2: β-PDF parameters for camber and thickness uncertain design variables. 

 

 

 
Figure 3: Airfoil shape envelope (left) and corresponding variations of the pressure coefficient distribution 

(right) for the DoE associated with the uncertain set Ω1.    
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Figure 4: Airfoil shape envelope (left) and corresponding variations of the pressure coefficient distribution 

(right) for the DoE associated with the uncertain set Ω2. 

4 UQ RESULTS AND DISCUSSION 

The comparison of UQ methods presented in this section is limited to second-order PCE 

approximation, as often adopted in robust optimization study for realistic applications [2]. For 

the considered 10 uncertain parameters, this results in a total of 66 coefficients to be computed. 

The standard LSA solution is employed here as a reference to asses the accuracy of the results 

obtained by LSA-GE, LARS and BPDN with a limited amount of data as well their potential 

gain in terms of efficiency. The reduced number of samples is defined as a minimum needed to 

attain a prescribed precision computed by the Q2 criteria. The efficiency gain is heuristically 

defined as the ratio between the number of samples used by LSA and their reduced number 

required by the other techniques, also including adjoint computations. In particular, we assume 

that the cost of computing a gradient for a single aerodynamic coefficient equals the one of a 

standard CFD run as done by [2] and [8]. However, for some complex applications, this as-

sumption could lead to underestimate the effective cost of adjoint CFD computations, which 

are known to be less robust than primal ones.  

 

For the two sets of uncertain amplitudes, Ω1 and Ω2, a DoE is generated using 1024 samples 

distributed according to a Sobol sequence. For each airfoil shape realization, a CFD evaluation 

of CDff, CDw, CL, CMy and the associated adjoint computations are carried out, resulting in a 

total of 5024 CFD runs. All the 1024 function evaluations are employed to feed the LSA prob-

lem. The values of mean and standard deviation estimated by using standard LSA for the dif-

ferent aerodynamic coefficients are reported in Table 3. 

 

 QoI Mean Sigma 

Ω1 

CDff (d.c.) 139.92 3.99 

CDw (d.c.)  25.12 2.88 

CL 0.80866 6.02E-03 

CMy -0.09495 1.84E-03 

Ω2 

CDff (d.c.) 146.80 24.49 

CDw (d.c.) 29.97 17.32 

CL 0.80289 3.69E-02 

CMy -0.09481 1.13E-02 
Table 3: Reference values of mean and standard deviation obtained by using standard LSA. 
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4.1 Mean and variance estimation  

The comparison of mean and variance estimations obtained by the enhanced LSA methods 

for CDff, CDw, CL and CMy is summarized in Table 4-8, 5-9, 6-10 and 7-11, respectively. All 

the meta-models show very good accuracy on the mean estimations while the accuracy is re-

duced for the variance up to a difference of ~7% with respect to the LSA reference value. For 

the Ω1 case, efficiency gains are greater for CDff and CMy while almost halve for CDw and CL. 

LARS method achieves the largest gain for each coefficient except for the wave drag. The gain 

is almost doubled for CDff and CL with respect to LSA-GE. BPDN achieves a performance 

similar to that of LARS for CDw and CMy. A similar behavior is also observed for the Ω2 case, 

with LARS and BPDN showing a noticeably better performance than LSA-GE, with an effi-

ciency gain which is improved by a factor ranging from ~2 up ~4 with respect to LSA-GE. The 

resulting PDFs are also compared in Figure 5 and Figure 6 for case Ω1 and Ω2, respectively. 

For case Ω1 we can observe that all the PDF functions are substantially symmetric except for 

the pitching moment coefficient. The differences among the different methods are quite limited. 

The obtained best fitting using analytical PDF laws are reported in Table 8, using the Open-

TURNS notation. Differently from case Ω1, for case Ω2 CDff and CDw PDFs are characterized 

by a non-negligible skewness while those of CL and CMy are almost symmetric as confirmed 

by fitting results shown in Table 13. In addition, compared to case Ω1, larger discrepancies are 

observed among the different methods, especially in CDff and CDw. For CDw, we also observe 

a non-physical tail of the PDF at values lower than 0.      

 

PCE method Mean 
Mean dif-

ference 
Sigma 

Sigma 

differ-

ence 

Q2 
DoE 

size 

Perfor-

mance gain 

LSA-reference 139.92 - 3.99 - - 1023 - 

LSAGE 139.97 0.03% 4.21 5.51% 0.979 30 17.1 

LARS 139.79 -0.09% 4.02 0.86% 0.977 33 31.0 

BPDN 139.76 -0.11% 3.96 -0.84% 0.975 42 24.4 
Table 4: Comparison of the different methods on the estimation of the CDff statistics for uncertain set Ω1. 

 

 

PCE method Mean 
Mean dif-

ference 
Sigma 

Sigma 

differ-

ence 

Q2 
DoE 

size 

Perfor-

mance gain 

LSA-reference 25.12 - 2.88 - - 1023 - 

LSAGE 25.18 0.25% 2.88 0.18% 0.934 66 7.8 

LARS 25.07 -0.21% 2.75 -4.34% 0.926 188 5.4 

BPDN 25.14 0.10% 2.81 -2.37% 0.924 182 5.6 
Table 5: Comparison of the different methods on the estimation of the CDw statistics for uncertain set Ω1. 

 

 

PCE method Mean 
Mean dif-

ference 
Sigma 

Sigma 

difference 
Q2 

DoE 

size 

Perfor-

mance gain 

LSA-reference 0.809 - 6.02E-03 - - 1023 - 

LSAGE 0.809 0.01% 5.86E-03 -2.68% 0.958 66 7.8 

LARS 0.808 -0.03% 5.98E-03 -0.66% 0.957 69 14.8 

BPDN 0.809 0.01% 6.11E-03 1.48% 0.949 132 7.8 
Table 6: Comparison of the different methods on the estimation of the CL statistics for uncertain set Ω1. 
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PCE method Mean 
Mean dif-

ference 
Sigma 

Sigma 

differ-

ence 

Q2 
DoE 

size 

Perfor-

mance gain 

LSA-reference -0.095 - 1.84E-03 - - 1023 - 

LSAGE -0.095 0.05% 1.86E-03 0.84% 0.964 35 14.6 

LARS -0.095 -0.08% 1.71E-03 -7.22% 0.963 41 25.0 

BPDN -0.095 -0.03% 1.75E-03 -5.33% 0.951 43 23.8 
Table 7: Comparison of the different methods on the estimation of the CMy statistics for uncertain set Ω1. 

 

 

 
Figure 5: Comparison of the histogram of the training data and the PDFs resulting from the different PCE meth-

ods for the case Ω1.  

 

QoI Mean Sigma Skewness Fitted PDF Fitted PDF Parameters 

CDff 139.92 3.99 0.203 LogNormal μ =-5.23, σ=7.44e-2, γ=8.64e-3 

CDw 25.12 2.88 0.232 Dirichlet α=[75.98, 30174.1] 

CL 0.8087 6.02E-03 0.08103 Beta α=5.51, β=5.79, a=0.79, b=0.83 

CMy -0.09495 1.84E-03 -0.224 Beta α=6.78, β=4.51, a=-0.103, b=-0.0897 
Table 8: Parameters of the fitted distributions obtained by the LSA reference PCE method for the case Ω1 

 

 

PCE method Mean 
Mean dif-

ference 
Sigma 

Sigma 

differ-

ence 

Q2 
DoE 

size 

Perfor-

mance gain 

LSA-reference 146.80 - 24.13 - - 1024 - 

LSAGE 146.52 -0.19% 24.45 1.29% 0.985 66 7.8 

LARS 146.22 -0.40% 23.74 -1.63% 0.975 92 11.1 

BPDN 146.46 -0.24% 24.24 0.45% 0.976 93 11.0 
Table 9: Comparison of the different methods on the estimation of the CDff statistics for uncertain set Ω2. 
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PCE method Mean 
Mean dif-

ference 
Sigma 

Sigma 

differ-

ence 

Q2 
DoE 

size 

Perfor-

mance gain 

LSA-reference 29.97 - 16.76 - - 1024 - 

LSAGE 29.50 -1.58% 16.42 -2.04% 0.939 66 7.8 

LARS 29.12 -2.86% 16.48 -1.65% 0.937 54 19.0 

BPDN 29.76 -0.71% 16.48 -1.65% 0.930 77 13.3 
Table 10: Comparison of the different methods on the estimation of the CDw statistics for uncertain set Ω2. 

 

 

PCE method Mean 

Mean 

differ-

ence 

Sigma 

Sigma 

differ-

ence 

Q2 
DoE 

size 

Perfor-

mance gain 

LSA-reference 0.803 - 3.69E-02 - - 1024 - 

LSAGE 0.803 -0.01% 3.51E-02 -4.91% 0.965 66 7.8 

LARS 0.805 0.31% 3.70E-02 0.26% 0.953 30 34.1 

BPDN 0.805 0.29% 3.60E-02 -2.43% 0.954 27 37.9 
Table 11: Comparison of the different methods on the estimation of the CL statistics for uncertain set Ω2. 

 
 

PCE method Mean 
Mean dif-

ference 
Sigma 

Sigma 

differ-

ence 

Q2 
DoE 

size 

Perfor-

mance gain 

LSA-reference -0.095 - 1.12E-02 - - 1024 - 

LSAGE -0.095 0.31% 1.13E-02 0.24% 0.952 29 17.7 

LARS -0.095 0.02% 1.09E-02 -2.95% 0.984 35 29.3 

BPDN -0.095 -0.05% 1.05E-02 -6.59% 0.958 35 29.3 
Table 12: Comparison of the different methods on the estimation of the CMy statistics for uncertain set Ω2. 

 
 

 
Figure 6: Comparison of the histogram of the training data and the PDFs resulting from the different PCE meth-

ods for the case Ω2.  
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QoI Mean Sigma Skewness 
Fitted Dis-

tribution 
Distribution Parameters 

CDff 146.79 24.13 0.748 LogNormal μ =-4.86, σ=0.295, γ=6.578e-3 

CDw 29.96 16.76 0.692 Beta α=2.71, β=6.43, a=-4.65e-4, b=1.12e-2 

CL 0.8029 3.68E-02 -0.0527 Beta α=5.12, β=4.95, a=0.678, b=0.923 

CMy -0.094812 1.12E-02 0.01716 Beta α=5.53, β=5.03, a=-0.135, b=-0.0584 

Table 13: Parameters of the fitted distributions obtained on the LSA reference PCE method for the case Ω2. 

4.2 Sensitivity analysis 

The sensitivity analysis based on PCE first order and total Sobol indices is presented in Fig-

ure 7 and Figure 8, for case Ω1 and Ω2, respectively. These results indicate that the camber 

variable at 83% of the chord has the greatest influence on the variance of CL and CMy while all 

thickness variables have a negligible effect. Conversely, for both drag coefficients, the most 

influent design variables are represented by thickness and camber at 17% followed by those at 

the 33% of the chord. A lower contribution is also observed for the camber at the 83% of the 

chord. All thickness variables, except the last one, show a non-negligible contribution to the 

variance of CDw, which is not surprising from physical viewpoint.  When analyzing interaction 

effects, we can observe that for case Ω1, they are almost negligible: minor deviations of total 

Sobol index from first order ones are only observed for the wave drag coefficients. The differ-

ences between the considered PCE methods are also very limited. On the contrary, for case Ω2, 

relevant interaction effects are observed also for the far-field drag coefficient.  

 

 
Figure 7: Comparison of the Sobol indices obtained from the different PCE methods for the case Ω1. 
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Figure 8: Comparison of the Sobol indices obtained from the different PCE methods for the case Ω2. 

 

5 CONCLUSIONS 

This work treats two uncertainty quantification problems in dimension d=10. Four methods 

of computing a polynomial chaos expansion have been compared. The main purpose is to try 

to minimize the computational cost required to accurately estimate the mean and variance of 

four aerodynamic coefficients on a transonic airfoil. It is shown that ‘gradient enhanced’ and 

‘compress sensing’ methods present significant performance gain when compared to the stand-

ard least square approximation. More precisely, the LARS method, which looks for a sparse 

PCE, achieve the most significant gain across all the test cases. In addition, it was found that 

the gain provided by LSA-GE method was sometimes lower than d, especially when dealing 

with larger variance of the uncertain parameter in test case Ω2.  

The achieved reduction in the size of the DoE by means of these advanced PCE techniques 

pave the way to a robust shape optimization using HiFi computations, building a polynomial 

chaos expansion at each step of the optimization. Further improvements are necessary, e.g. by 

combining these techniques with the dimension reduction of the uncertain design space, in order 

to further reduce the cost of the UQ surrogate model.   
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F-92322 Châtillon - France

e-mail: {sebastien.bourasseau, jacques.peter}@onera.fr

3 Institut Polytechnique de Paris
F-91120 Palaiseau - France

Keywords: adjoint method, body-force, aerodynamic, propulsion, optimization

Abstract. Innovative aircraft studies often involve disruptive engine integration concepts, such
as distributed propulsion, boundary-layer ingestion or unducted fan strongly interacting with the
airframe. For such designs, airframe-engine aerodynamic interaction must be taken into account
starting from the early design phase, with the need for computational-effective and reliable
approaches to support a large number of design iterations and preliminary optimizations. Body-
Force Modeling (BFM) methods have successfully allowed a faithful reproduction of the engine
performance trends for analysis and design studies, while significantly reducing the simulation
time and memory costs. However, an adjoint formulation is mandatory to efficiently use such
models in gradient-based optimization involving a large number of airframe and engine shape
parameters at once. Thus, a discrete Adjoint formulation based on explicit Body-Force Modeling
(ABFM) is proposed to tackle highly coupled aero-propulsive optimization for preliminary
design. The methodology is illustrated here using a simplified body-force model to optimize a 2D
Distributed Propulsion (DP) configuration, involving both lumped engine parameters and airfoil
shape design variables at the same time. The contribution of the ABFM to the adjoint solution
and to the shape gradients is analysed, showing an important influence on both. Preliminary
optimisation results are then presented.
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1 INTRODUCTION

Environmental challenges urge the aeronautic sector to decrease the air traffic carbon footprint
by 50% in 2050 relative to 2005 levels [1, 2, 3]. Over the past decades, the conventional aircraft
configurations have been optimized while minimizing the aerodynamic interactions between the
airframe and the engines, integrating them under the wings or on the fuselage side. However,
such design paradigms seem to have reached an asymptotic efficiency [4]. For instance, a further
increase of the By-Pass Ratio (BPR) would raise structural and operational issues, as at max
climb and cross-wind conditions the interaction between the fan aerodynamic and the airframe
can no longer be neglected [5, 6]. Thus, new aircraft configurations exploiting aero-propulsive
synergies are investigated [7, 8, 9]. The forthcoming introduction of ultra high by-pass ratio
engines as well as the increasing attention towards new engine integration architectures, such
as distributed propulsion or boundary-layer ingestion for instance, require a coupled modeling
of the aerodynamics and propulsion sub-systems. Indeed, for such innovative configurations, a
coupled design approach is essential to correctly predict their performance and thus maximize
the aero-propulsive gains.

In the past years, several studies on high-fidelity multidisciplinary optimization have focused
on aero-structure design, showing relevant potential improvements for the next generation of
aircrafts with increased flexibility [10, 11]. However, only few optimization studies have been
dedicated to aero-propulsive architectures by means of a coupled approach. Several studies have
been conducted on the distorted engine inlet conditions and the minimization of their influence
on the engine performance to obtain an optimized fan design. Most of them used the adjoint
methodology to compute the sensitivities of the distortion metrics regarding the engine inlet
shape [12, 13, 14]. In addition, propulsive models were used to ensure a reasonable optimization
computational cost.

Indeed, simulating the engine aerodynamics under distorted inlet conditions using CFD
would require a computational domain as large as one distortion pattern at least. Besides,
considering a stationary azimuthal inlet distortion in the aircraft reference frame, the blade
undergoes a periodic forcing during its rotation, and therefore an unsteady simulation is required
to reproduce the distortion transfer across the engine [5, 15, 6]. As an example, when considering
engines buried in the airframe, complex and costly simulations - like URANS - are required
to study the aero-propulsive synergies and assess the overall performances. However, such
simulations are cost prohibitive for preliminary optimization studies, and would require advance
adjoint capabilities - such as unsteady adjoint - to be integrated in a gradient-based optimization
framework. Thus, lower fidelity propulsive models are necessary to study such innovative engine
integration architectures. In a recent study, Kenway used the actuator zone model [12], that
applies a given engine thrust in the fan-swept volume with no direct dependency on the local
flow state. Ordaz and Gray [13, 14] both used outflow and inlet boundary conditions at the inlet
and outlet fan-swept volume surfaces. These boundary conditions allowed them to simulate the
enthalpy and entropy rises, using a 1D thermodynamic model. The fan pressure ratio and the
mean static pressure at the fan face were considered to compute the total fan thrust. Thus, the
engine lumped parameters - here the total thrust - depend only on the averaged flow state at the
engine inlet boundary. Such models can be considered as weakly coupled to the flow equations,
since no local information from the internal flow stream affects the engine performances. As
a consequence, no distortion effects can be taken into account by such models, while this is
key to the global aero-propulsive efficiency trade-off [16]. In their recent work, Gray et al. [8]
modified their engine model to simulate the internal flow stream of a BLI configuration, using a
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body-force methodology and considering the body-force applied on the engine flow as a design
variable of the optimization. Therefore, the CFD aeropropulsive simulation is enriched and the
forces applied on the engine internal surfaces can be accounted for. However, the fan thrust is
still computed by a 1D thermodynamic model, relying on integral flow variables at the fan face,
featuring a constant fan polytropic efficiency. Therefore, inlet distortions effects on the engine
performances cannot be directly taken into account. The authors decided to add a constraint on
the distortion metrics to control the distortion amplitude. However, the aero-propulsive trade-off
misses information on the fan efficiency off-set due to inlet distortions.

On the other hand, in recent research studies, the body-force modeling methodology has
proven its ability to properly reproduce the local blade work added to the flow and its associated
efficiency [15], even under distorted conditions [5, 17, 18, 16]. It reproduces with a good
accuracy the turbofan performance trends and capture the main aero-propulsive coupling effects,
including the distortion transfer across the engine [18, 17, 5] at a computational cost two order
of magnitude lower than the URANS [16].

Explicit body-force models rely analytically and directly on the local flow field W , the mesh
coordinates X and the blade shape parameters β to compute the source terms. On the contrary,
data-based body-force models rely on high-fidelity simulation data - using interpolations [17] or
neural networks for instance [19] - to compute the source terms, and therefore the functional
dependancy of S to W and β is not straightforward. Given their direct dependence on engine
parameters, explicit models are naturally adapted to optimization problems. They are also found
more robust than the data-based ones [6]. For instance, the Hall model [20], improved by Thollet
[15], introduces a direct dependence on ’engineer’ blade shape parameters, like the local blade
chord or camber, making it suitable for optimization studies handling airframe and engine blade
parameters at once. Such models have already been used to conduct parametric studies on both
fan and nacelle geometries for short inlet high by-pass ratio engine designs [5, 6]. Then, they
were also used to undertake the first rotor/stator blade shape optimizations under inlet distortions
[20, 16]. All these studies have proven the BFM capacity to undertake complex trade-offs on
highly coupled external-internal flow conditions. However, to the best of the authors’ knowledge,
no adjoint formulation of these models has been proposed so far in the literature. The lack of
an efficient method to compute the gradients of the Quantities of Interest (QoI) with respect
to the design parameters restricts the design space dimension that can be explored during the
optimization at an affordable computational cost, when using these models. It also implies
robustness issues in the optimization loop when using finite differences [16]. To efficiently
integrate the BFM in a gradient-based optimization framework, an adjoint body-force is hence
needed.

In this context, the goal of this paper is to present the adjoint body-force equations and the
implementation methodology retained, and then to show the preliminary results obtained for
a simplified body-force model used as a prototype. This new tool will enable us to capture
the main coupling effects between the propulsion system and the external aerodynamics, by
providing access to their sensitivities for different QoIs, like the fan power consumption. This
implementation methodology features genericity and modularity and benefits from algorithmic
differentiation softwares, making it suitable for any explicit body-force model.

The ABFM implementation strategy is first presented and the code structure validated using
an analytic test case in section 2. Then, the ABFM methodology is applied to a simplified
BFM model featuring lumped engine parameters in section 3. Using this simplified model and
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its adjoint formulation, a first demonstration of the use of ABFM sensitivities in a gradient-
based optimization framework is undertaken on a two-dimensional test case representative of a
distributed propulsion design, in section 4. Finally the on-going developments and analysis will
be discussed.

2 METHODOLOGY AND IMPLEMENTATION

2.1 Body-Force Modeling (BFM)

All BFM methods rely on reproducing the blade effect on the engine flow by adding source
terms to the right hand side of the steady RANS equations. To do so, one must consider a single
blade-to-blade row channel and circumferentially average the blade aerodynamic force applied
to the fluid. The resulting equations can be used to build up a model relying on the local flow
and the model parameters. As consequences, the source terms are purely local. According to the
literature, a steady body-force computation provides a good approximation of the time-averaged
engine flow and performances, for both rotor and stator blade rows [20, 15], even under inlet
distortions [5, 6]. However, the fidelity of the currently available BFM models decreases when
studying off-design operating points, if the model is not re-adapted for these conditions [15].
These source terms are expected to reproduce the enthalpy and entropy rise across any blade
wheel, based on the local flow state W . The general formulation is summarized as follows:

R(X,W )− S = R̃(X,W, S) = 0 , (1)

where we denote by S the body-force source terms, R the residuals of the discretized RANS
equations and R̃ their augmented form, i.e. including body-force contribution. As the forces ap-
plied to the flow are modeled for the whole engine row, its blades are not meshed. Therefore, the
body-force mesh is far simpler and smaller in size than its blade-fitted counterpart, thus reducing
the memory and CPU wallclock-time needed to undertake the simulation [16]. Furthermore, this
methodology can simulate accurately an inlet distortion transfer across the engine stages [6].

Explicit body-force models intend to analytically evaluate the blade force applied to the fluid,
based on the local flow variables W and the engine parameters β. These latter can include
both engine global variables, like rotational speeds or its total thrust, as well as blade shape
parameters. Consequently, the functional dependencies of the source terms can be expressed as
S = S(X,W, β). Considering the absence of a blade metal blockage modeling, neglecting any
contribution to the one-equation turbulence model considered here, denoting −→v the local flow
velocity vector in the absolute reference frame, ρ the local flow density and

−−→
f the local BFM

force applied to the fluid, the general expression of S reads :

S =


Sρ
−−−−−→
S
ρ
−→
v

SρE
Sν̃

 =


0

ρ
−−→
f

ρ
−−→
f · −→v

0

 . (2)

2.2 Adjoint Body-Force Modeling (ABFM) equations

Enhancing the aero-propulsive system performance through a simultaneous optimization
of the airframe shape variables α and the engine parameters β requires to deal with a large
number of design variables and a small number of functions of interest. Therefore, the adjoint
methodology is of great interest to precisely and efficiently compute the associated gradients [21].
A discrete adjoint framework [22] is considered here since it enable to compute the sensitivities
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of a QoI J (X,W ), evaluated at the steady state solution R(X,W ) = 0, with an accuracy that
can reach the machine precision [23].

If the propulsive system is modelled using an explicit BFM model, the adjoint equations must
be re-written to take into account the body-force contribution to the adjoint system and to the QoI
gradients. As a QoI may directly depend on the body-force source term - J = J (X,W, β) - its
gradient with respect to the engine design parameters β, at residual convergence R̃(X,W, S) = 0,
reads:

dJ
dβ

=
∂J
∂X

dX

dβ
+
∂J
∂W

dW

dβ
+
∂J
∂β

, (3)

dR̃

dβ
=

∂R

∂X

dX

dβ
+
∂R

∂W

dW

dβ
− ∂S

∂X

dX

dβ
− ∂S

∂W

dW

dβ
− ∂S

∂β
= 0 . (4)

︸ ︷︷ ︸
additional contributions due to the BFM source terms

Let us introduce the adjoint body-force equations, obtained using the methodology detailed in
[21]:

(
∂R

∂W
− ∂S

∂W

)T
Λ̃ = − ∂J

∂W
. (5)

︸︷︷︸
BFM contribution

where the term within brackets correspond to the Jacobian operator associated with the
augmented residuals. Then, by multiplying eq. 4 by Λ̃T , adding it to eq. 3 and substituting from
eq. 5, we obtain the following gradient expression:

dJ
dβ

=

(
∂J
∂X

+ Λ̃T ∂R̃

∂X

)
dX

dβ
+

(
∂J
∂β

+ Λ̃T ∂R̃

∂β

)
. (6)

︸ ︷︷ ︸
BFM direct contribution to sensitivities

The gradients of J with respect to the aerodynamic shape parameters α simply reduces to the
usual expression:

dJ
dα

=

(
∂J
∂X

+ Λ̃T ∂R̃

∂X

)
dX

dα
, (7)

︸︷︷︸
BFM indirect contribution

as S does not depend on α. We can observe that, even considering the QoI sensitivities
to α, the BFM still adds a contribution to the adjoint system. Therefore, the BFM indirectly
contributes to the QoI sensitivities through the adjoint vector. This shows that the airframe and
the engine aerodynamics are coupled even when evaluating the QoI gradients. Moreover, an
additional contribution appears in the QoI gradient regarding the engine parameters β, as shown
in eq. 6, corresponding to the direct sensitivities of the BFM model to β.

163



C. Dosne, R. Barrier, S. Bourasseau, M. Carini, R. Moretti and J. Peter

2.3 BFM and ABFM implementation aspects

As previously shown in eq. 2, body-force source terms are all built upon a generic structure.
Besides, by analyzing Thollet’s [15] investigation and enhancement of existing explicit BFM
models, we observe that most of them define the blade force

−−→
f as a function of the local

flow variables projected in the local blade skeleton coordinate system. Therefore, most of the
operations required to compute S from W are common between those various models. In
addition, the enhancements proposed by Thollet - such as the quadratic losses estimation or
the Prandtl-Ackeret compressibility correction - can be applied to any of the studied models.
Similarly, the blade metal blockage modelisation proposed by Kottapalli [24] is independent
from the chosen model. Finally, body-force models are expected to evolve to better capture the
engine aerodynamics. Therefore, a generic and modular implementation of the BFM seems
preferable to reduce the implementation and validation effort necessary for any new model.
Each basic operation required to compute S from W would define a module, implemented
and validated only once. Chaining these modules from their required inputs and outputs will
lead to the desired explicit BFM model. Besides, considering the proven capacities of source
transformation algorithmic differentiation engines like Tapenade [25], the adjoint formulation of
each module can be obtain and validated easily from the primal implementation. With such code
architecture, any new BFM model to implement will benefit from the existing ones in the code,
and so will its adjoint formulation.

As schematized in figure 1, a modernized module [26] of the elsA software [27] (ONERA-
SAFRAN property) has a code structure based on basic operators sharing the same attributes
and methods thanks to the C++ Object-Oriented Programming capabilities. Operations affecting
the data vectors are implemented in Fortran scripts for computation effectiveness, wrapped by
the C++ operator, managing the HPC layer and the code execution. An automate automatically
chains the operator from their inputs and outputs. The user can provide external operators to the
CFD software to enable new computational capabilities. Therefore, such code structure allows for
a proper modification of the CFD software to take into account BFM source terms, and provides
the genericity and modularity structure researched in the previous paragraph. In addition, like
some other elsA modules, this modernized part has adjoint capabilities. In the elsA software, the
discrete adjoint implementation has been chosen [22], since it can provide the sensitivities of
the functions of interest up to zero-machine precision [23]. Tapenade is used to produce both
the tangent and adjoint codes from source transformation of the primal implementation, once
validated. Thus, it has been decided to create an inhouse library called BACARDI, external to
elsA and interfaced with its modernized module, implementing all body-force modules using the
elsA operator structure, as depicted in figure 2.

The user interacts with the BACARDI library thanks to a python script, and build all the
BFM operators corresponding to the chosen model. Then BACARDI automatically adds these
operators to the elsA modernized module, which will then chain all CFD and BFM operators
all togethers. Thus, the solver can solve the CFD problem integrating the BFM forcing. In the
same way, when interfaced with BACARDI, the modernized CFD software can solve the ABFM
adjoint equations given in eq. 5. However, the additional direct contribution of the ABFM to the
QoI sensitivities with respect to the engine design variables cannot natively been computed by
elsA. This capability must then be added to the CFD software.
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Figure 1: the modernized elsA module frame-
work

Figure 2: the BACARDI external library in-
terfaced with the modernized elsA module,
providing both BFM and ABFM capabilities

2.4 Code structure implementation and validation

In order to perform a first validation of the adjoint body-force implementation, we consider
an academic test case for which the primal solution and the QoI gradients are analytically known.
Such a model consists of the steady 1D-Euler supersonic flow of an ideal gas along a mono-
dimensional channel of unitary length, starting from x0 = 0 to x1 = 1 m. The BFM forcing is
applied all along this channel. The flow is fully supersonic so all boundary parameters can be
applied on the inlet. The solution is governed by the following equations :



d (ρu)

dx
= 0

d (ρu2 + P )

dx
= ρf

d (ρuht)

dx
= ρuf

, (8)

where ρ is the flow density, u the flow velocity, P the static pressure and ht the total enthalpy.
We decide to enforce a linear velocity solution, governed by a body-force parameter β1D :

u(x) = u0 [1 + β1D (x− x0)] with β1D =
u1
u0
− 1

x1 − x0
. (9)

Using the manufactured solution method, under isentropic flow asumption, the body-force
forcing reads :

f = β1D

[
uu0 − c20

(u0
u

)γ]
. (10)

where c0 represents the speed of sound for the inlet flow conditions and γ is the heat capacity
ratio of the air. The validation of the BFM implementation against the analytic results is shown
in figure 3a.

The chosen objective function is defined as the total energy supplied by the volume force to
the flow, integrated over the all body-force domain volume VBFM , denoted FPOW and given by
the general expression:

FPOW (X,W, S) = −
∫∫∫

VBFM

SρE(
−−→
f )dV . (11)
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(a) Static temperature ratio (in orange), and Mach
flow field (in blue) along the channel. Results ob-
tained from the BFM code are plotted in plain lines,
analytic values are plotted in dashed lines.

(b) ABFM gradient relative error with respect to
analytic expectation. Comparison against FD gradi-
ents computed for several relative step size of β1D.

Figure 3: BFM (left) and ABFM (right) validation for the analytic test case

In this monodimensional case, FPOW simplifies as follow:

FPOW (u, β1D ; u0, c0) = −
∫ x1

x0

ρufdx . (12)

Since ρu is constant along the channel, the analytic expression of FPOW can be obtained by
substituing f for its expression given in eq. 10:

FPOW (u, β1D ; u0, c0) = −ρu
∫ x1

x0

fdx (13)

= −ρu

(
u1

2 − u02

2
+

c0
2

γ − 1

[(
u0
u1

)γ−1

− 1

])
. (14)

As FPOW and u are analytically known, so is FPOW derivative with respect to β1D:

dFPOW
dβ1D

= ρuu0 ·
u1 − u0
β1D

[
u1
u0
−
(
c0
u0

)2(
u1
u0

)−γ
]

. (15)

In our CFD computations performed with elsA we consider M0 = 1.1, Ti0 = 302.4K and
Pi0 = 120 108.30Pa as supersonic inlet conditions. Convective flux are discretized using the
Roe scheme, without limiter. The mesh is composed of one hundred cuboids along the x axis,
and is treated as unstructured. In figure 3b, one can see the very good agreement between the
ABFM-computed gradient and the gradient estimated by centered finite differences (FD) for
various relative steps. Both gradients show a small residual offset from the analytic expectation,
by −0.8 %.

These results ensure the BFM and ABFM implementation are valid, and thus the code
architecture is correct. Therefore, the framework is ready for the implementation of BFM models
of interest, of growing complexity and fidelity.
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3 ABFM RESULTS ON A 2D TEST CASE

3.1 A Distributed Propulsion test case geometry featuring a simplified BFM model

A simplified body-force model has been implemented into the BACARDI library and then
used on a 2D test case geometry modeling a distributed propulsion wing section, with a rear-
mounted engine on the suction side. This BFM model, later called ’T-spread’ in this paper, relies
only on lumped engine parameters, which is useful at the conceptual design stage, for which
no detailed engine design exists yet. This model provides a first proof of concept of adjoint
body-force for coupled aero-propulsive optimizations. For such model, the analytic formulation
of the force f of eq. 2 is based directly on :

• the local flow velocity in the absolute frame of reference −→v ,

• the total thrust provided by the engine T ,

• the total sub-domain volume where the body-force model is active VBFM

Thus, f reads :

−−→
f =

−→
v

ρ ‖−→v ‖
· T

VBFM
. (16)

The considered geometry, shown in figures 4 and 5a, consists of a NACA 23012 airfoil for the
main wing section and a Clark-Y airfoil for the engine nacelle. As depicted in figure 4, the
mesh is unstructured, and composed of prism layers around the airfoils to properly discretize the
boundary layers, and of tetrahedra elsewhere. The mesh is composed of approximately 77 · 103

cells, and the computational domain size is 300 times the NACA chord length cNACA. The first
cell of the prism layers features a 2.4 · 10−6cNACA height. Viscous wall boundary conditions are
imposed at the airfoils skin, and non-reflective boundary conditions are imposed on the limit
of the computational domain. One can see in figure 5b the total pressure-ratio rise across the
propulsion system obtained by the BFM forcing, and in figure 5c a representation of the region
where this forcing is active. As one can see in the latest, the BFM forcing is decreased near the
NACA wall to avoid boundary-layer non-physical separation. These results have been obtained
by a RANS simulation, taking into account the contribution of the body-force source terms in
the flux balance. The negative Spalart-Allmaras turbulence model was used for this test case.
The convective fluxes are discretized using the Roe scheme. The discrete viscous fluxes are
computed based on cell-centered gradients corrected at the interface in the direction of the two
adjacent centers. The considered flow conditions features a Reynolds number Re = 1.165 · 107

and a Mach number M = 0.2.
The position of the Clark-Y nacelle can be modified by shifting it along the z axis trough

the parameter τz, or rotating it around an axis parallel to the y-axis intersecting the profile at its
trailing edge through the parameter θy. The size of the Clark-Y profile can be modified using
the σ coefficient. Again, the Clark-Y profile position along the x-axis is anchored at the trailing
edge, the scaling coefficient thus affects the position of the leading edge. On the NACA profile,
only the suction side can be altered. This curve is parametrized by the CST method [28], using
16 coefficients to represent the curve. The 5 coefficients affecting mainly the rear of the suction
side can be used as design variables. They are denoted Πv1 from the trailing edge to Πv5 and
enable to modify the engine inlet diffuser. Since such parametrization would modify the volume
of the body-force zone, it is convenient to use the scalar thrust density provided by the engine
t = T/VBFM as the BFM design variable. This parametrization is depicted in figure 6.
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Figure 4: Bi-dimensional wing section mesh geometry

(a) Mach flow field around the wing section, at selected flight conditions

(b) Total pressure contours, divided by the up-
stream total pressure

(c) BFM volume energy source term in the forc-
ing zone

Figure 5: Mach and pressure stagnation contours around the wing section geometry, featuring a
BFM forcing between the airfoil and the engine nacelle

3.2 Mesh sensitivities computation methodology and gradients validation

The adjoint system is solved in the modernized elsA module using an iterative Krylov
algorithm with a 10−5 tolerance on the residual of the linear equation. However, this module
cannot yet assemble the partial derivatives of J and R̃ with respect to the mesh coordinates X .
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Figure 6: Parametrization chosen for the test case geometry

Therefore, a methodology has been implemented to assemble the sensitivities of J with respect
to the shape variables, using the solution vector Λ̃ of the ABFM adjoint equations given in (5).
This methodology, illustrated in figure 7, consists of producing for each shape variable α two
deformed meshes X + ∆X and X − ∆X , interpolating the primal flow solution W primal on
those and measure the QoI and residuals variations, respectively denoted ∆J and ∆R̃. The
mesh sensitivities can then be assembled and added to the BFM sensitivities to obtain the full
gradient. On the other hand, modifications were added to the modernized elsA module in order
to assemble the partial derivatives of J with respect to the BFM variables β.

Figure 7: Methodology to compute the sensitivities of the QoI J with respect to the shape
parameters

Adjoint gradient validation against finite difference estimation is shown here for the Πv1
to Πv5 shape parameters, and for the scalar thrust density t BFM parameter. For the first five
parameters, only the mesh sensitivities contributes to the gradient, while for the thrust density,
only the direct ABFM sensitivities contributes to it. We consider two different QoIs, the pressure
drag coefficient FCDp

and the power transmitted by the engine to the flow FPOW presented in
(12). We compare the obtained gradients with FD computations. FD runs show a similar residual
convergence than the primal computation R̃ρ ≈ 10−7, and a FD step study on the Πv4 parameter
has shown that gradient convergence is obtained as of a relative step δFD = 10−3. Gradient
comparison against the FD estimations is shown in figure 8. Gradients have been reduced to
dimensionless numbers using the QoI primal evaluation and the associated reference parameter
κ value as well:

∇adimF(κ) = ∇F(κ) · (κ/Fprimal) . (17)

We can see a very good agreement between the adjoint and the FD results, except for the
Πv5 parameter, for which the relative error reaches about 26.5% of ∇FCDp

(Πv5) and 16% of
∇FPOW (Πv5). Further studies, with better FD convergence and maybe finer FD relative steps -
in the validation methodology as well as in the mesh sensitivities evaluation - are required to
understand the origin of this notable error for this parameter. The relative errors for the other
parameters are all inferior to 1.2% for FCDp

and to 3.5% for FPOW . For the BFM parameter t,
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(a) Gradients validation for FCDp

(b) Gradients validation for FPOW

Figure 8: Gradient comparison between the adjoint and the FD results. FD are computed using a
δFD = 10−3 relative step

170



C. Dosne, R. Barrier, S. Bourasseau, M. Carini, R. Moretti and J. Peter

the respective errors are 9 · 10−2% and 6 · 10−3%, validating the ABFM implementation for this
model.

3.3 Comparison of sensitivities with and without ABFM

In order to highlight the ABFM contribution to the adjoint fields and to the shape gradients,
we compute the derivatives of FCDp

on the same primal solution, but removing the ABFM
contribution to the adjoint equations. The purpose is to assess the error induced on the adjoint
fields - and by consequences on the gradients - if one must compute the sensitivities of a given
QoI using the adjoint methodology, on a coupled configuration modeled using BFM, but lacking
the ABFM contribution. The classical CFD adjoint system is thus solved, its solution is denoted
Λ. We then compare the resulting non-dimensional gradients for the shape parameters Πv1 to Πv5
in figure 9. We can see that, particularly for the shape variables parametrizing the NACA suction
side in the engine vicinity, a gradient difference superior to 10% and up to 15% is obtained.
Such gradient modification will most certainly alter the optimized geometry reached by the
optimizer, when compared to an optimization conducted without the engine sensitivities taken
into account. However, considering the significant error on ∇FCDp

(Πv5) in the previous section,
it is not possible to distinguish the ABFM contribution from the numerical error. Therefore,
the important difference of about −25% observed for this parameter must be considered with
precautions. In future studies, the body-force contribution to the adjoint fields will be studied in
details to estimate the amplitude and the scope of the ABFM contribution.

Figure 9: Gradient comparison and relative differences between adjoint computations with and
without ABFM
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4 A FIRST AERO-PROPULSIVE OPTIMIZATION USING THE ABFM

In this section we undertake a first optimization using the adjoint formulation of a body-force
model. This first optimization, conducted on the airfoil section presented in the previous section,
is undertaken by minimizing the fan power consumption FPOW , considering a limited number of
shape and BFM parameters - the parameters τz, θy and σ controlling the nacelle position and size,
and the body-force scalar thrust density t - for which the favorable direction is known. Indeed, it
is expected for the engine section to increase, and the thrust density to decrease. This behavior
is comparable to the reduction of both the fan pressure ratio and the fan consumption observed
when the By-Pass Ratio of a turbofan is increased. We consider the longitudinal and vertical
equilibrium functions, respectively denoted FFx and FFz , to ensure the aircraft operation point
remains unchanged during the optimization process. FFx and FFz are built upon the drag and lift
coefficients FCDp

and FCLp
, and the body force momentum source term integrals FBFMx and

FBFMz , which are respectively given by:

FBFMx =

∫∫∫
VBFM

−−−−−→
S
ρ
−→
v .

−−→
ex dV , (18)

and FBFMz =

∫∫∫
VBFM

−−−−−→
S
ρ
−→
v .

−−→
ez dV . (19)

Considering a flow incidence angle ψ, FFx and FFz respectively reads :

FFx = FCDp
+ [cos(ψ)FBFMx + sin(ψ)FBFMz ] (−1) , (20)

and FFz = FCLp
+ [− sin(ψ)FBFMx + cos(ψ)FBFMz ] (−1) , (21)

since the resultant applied by the body-force on the aircraft is the opposite of the resultant
computed through the momentum source terms integration. As the aircraft wing section must
compensate the drag of aircraft systems not modeled here - e.g. the fuselage carrying passengers
- the minimal longitudinal force amplitude required is different from 0. Because a net thrust is
necessary, featuring a negative value in the chosen coordinates system, a maximum inequality
constraint is imposed on the optimizer to ensure the optimized wing section provides at least the
same amount of net thrust than the baseline configuration:

FFx ≤ FFxbaseline < 0 . (22)

Since the vertical equilibrium must remain unchanged, two inquality constraints are imposed
on the optimizer to ensure the FFz variation of the optimized configuration with respect to the
baseline remains below 1% of its baseline value:

0.99FFz baseline ≤ FFz ≤ 1.1FFz baseline . (23)

The baseline wing section configuration features a net thrust FFxbaseline = −2.05 ·102N and a lift
coefficient FCLp baseline = 0.6. The QoIs and their gradients are reduced to dimensionless numbers
to help the optimizer, by the same process than previously presented in eq. 17, using the design
variables and QoIs baseline values. The design variables are also reduced to dimensionless
numbers. τz is divided by the baseline engine width τzbaseline ≈ 0.05cNACA, and θy by the baseline
Clark-Y angle θybaseline ≈ 15.5 deg. Finally, the scalar thrust density is divided by the baseline
value tbaseline = 5.3 · 105N.m−3 as well. Non-dimensional QoIs and variables are denoted with a
suffix a.
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We use the optimization framework pyOpt [29] and its SLSQP optimizer implementation. The
gradient values are provided to the optimizer using the new elsA-BACARDI ABFM capacities
previously validated. Once fully reduced in non-dimensional form, the optimization can be
summarized as follow:

minimize FPOWa

subject to τza ∈ [−0.15 ; 0.3]

σa ∈ [0.8 ; 1.2]

θya ∈ [−0.13 ; 0.13]

ta ∈ [−∞ ; ∞]

FFxa ≤ −1.0

FFza ≤ 1.01

−FFza ≤ −0.99

regarding τza, σa, θya, ta

The design variables and QoI evolution throughout the optimization process are drawn in
figure 10. We can see that 8 QoIs evaluations are enough to reach the optimal design, due to the
simplicity of the problem and the small size of the design space. The QoI gradient evaluations
are not shown here, but 6 of them were required to reach the optimized configuration.

As expected, τz reaches the maximum value allowed and both the nacelle size σ and the
scalar thrust density t are reduced, respectively by 10.9% and 21.1%. A very small decrease of
the Clark-Y angle is also observed, by about −1.1◦. This optimized configuration features a
power fan consumption reduction of ∆FPOWa = −6.1% compared to the baseline. We can also
observe that the constraints are respected, reaching the minimal |FFx| amplitude and the minimal
FFz allowed. This is expected since minimizing the net wing section thrust and lift coefficient
helps minimizing the engine power consumption.

In figure 11, we present for the optimized configuration the same flow field analysis than
the one conducted on the baseline geometry (see figure 5). In addition, in figure 11b, a sketch
of the Clark-Y re-sizing and position change is proposed to illustrate the amplitude of each
transformation. The baseline geometry is drawn in black, the optimized one in red. For instance,
the Clark-Y size change can be illustrated by the change of its chord length. Comparing
figures 11a and 5a, we observe a smaller flow acceleration across the engine for the optimized
configuration. Similarly and as expected, the optimized design show a smaller total pressure
rise across the engine than the baseline (see figures 11c and 5b). Therefore, less kinetic energy
is wasted in the engine jet flow per unit of volume for the optimized design. However, the
enlargement of the engine has increased the mass-flow rate and the width of the jet wash.
Therefore, an exergy analysis [30] would be required to precisely assess the aeropropulsive
benefits.
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(a) Design variables non-dimensional values for during the optimization iterations. The bounds of the
design variables are drawn in dotted lines.

(b) Objective function (in blue) and constraints (in red) non-dimensional values during the optimization
iterations. Constraints bounds are represented in dotted lines, while the initial objective function value is
drawn using dashed lines.

Figure 10: Optimization convergence history for both the design variables (top) and the QoIs
(bottom).
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(a) Mach flow field around the optimized geometry, at selected flight conditions.

(b) Sketch of the Clark-Y position and size change
for the optimized configuration (in red) with re-
spect to the baseline (in black).

(c) Total pressure contours around the optimized
configuration, divided by the upstream total pres-
sure.

Figure 11: Flow field analysis of the optimized wing section (top and bottom right) and sketch
of the shape variation between the baseline and the optimized configurations (bottom left).
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CONCLUSIONS AND FUTURE WORK

The current work has introduced the Adjoint Body-Force equations and proposed an efficient
methodology to implement it. In section 2, the ABFM implementation has been successfully
undertaken in the elsA framework, for a simplified explicit BFM model. In section 3, a body-
force model of interest for the conceptual design stages has been implemented, as well as its
adjoint formulation. The gradients involving direct or indirect ABFM sensitivities have been
validated against finite-differences. Then, we have highlighted the strong influence of the ABFM
sensitivities on the airframe shape gradients, with a relative differences of about 10%, even far
from the BFM forcing zone. Such result shows that neglecting the propulsive sensibilities during
an aero-propulsive optimization would strongly affect the optimal solution, since the optimizer
lacks important information on the aero-propulsive coupling phenomena and trade-off balance.
Finally, in section 4, we have presented and validated the ABFM optimization framework set
up, using an optimization test-case for which the leading-order behavior can be deduced based
on simple physical considerations. The results obtained for this test-case are consistent with
the expectations. Thus, the ABFM optimization framework can now be used to conduct more
complex optimization, featuring a greater number of design variables.

These results strengthen the idea that the adjoint body-force is a promising tool to undertake
aero-propulsive optimization at a reasonable computational cost, on configurations featuring
a strong coupling between the engine and the airframe aerodynamics. However, as the other
studies available in the literature [12, 14, 13, 8], blade shape parameters are not considered in
the engine model used for this study. Therefore the effects of the fan geometry on the distortion
dampening and transfer across the engine [6] cannot be assessed using the ’T-spread’ model. In
order to consider the engine aerodynamic response to distortions and its dependencies on the
blade shape parameters, a three dimensional propulsive model, with higher modeling fidelity and
directly coupled to the local flow variables, is needed. The BFM model proposed by Hall [20] in
2015, latter modified by Thollet [15] and Godard [6], is adapted to such studies.

In our future work, we will conduct more complex optimization on the bi-dimensional wing
section geometry, with a larger set of design variables. Then, we will evaluate the Hall model
capabilities to optimize axisymmetric and three-dimensional airframe configurations, while
taking into account the sensitivities due to the engine system thanks to the ABFM. Later, we will
try to undertake a simultaneous optimization of both the engine and the airframe designs, by the
use of the Hall ABFM implementation.
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2014.

179



EUROGEN 2023
15th ECCOMAS Thematic Conference on

Evolutionary and Deterministic Methods for Design, Optimization and Control
N. Gauger, K. Giannakoglou, M. Papadrakakis, J. Periaux (eds.)

Chania, Crete Greece, 1-–3 June 2023

TOWARDS REAL-TIME CFD

Anirudh N. Rao1,2, Sina C. Stapelfeldt1, Andrew Duncan3, Shahrokh Shahpar4 and
Francesco Montomoli2

1Vibration UTC, Department of Mechanical Engineering,
Imperial College London, South Kensington, London, UK SW7 2BX

2Department of Aeronautics, Imperial College London, South Kensington, London, UK SW7 2BX
3Faculty of Natural Sciences, Department of Mathematics, Imperial College London, South

Kensington, London, UK SW7 2BX
4Innovation Hub, Future Methods, Rolls-Royce plc, Derby, UK, DE24 8BJ

Corresponding author’s email: anirudh.rao@imperial.ac.uk

Keywords: Convolutional neural network, UNET, intake flows, distortion

Abstract. Quick turnaround times in the design stages of the aerospace industry require faster
and more accurate predictions of the flow fields, especially in turbomachinery applications.
Recent advances in machine learning combined with the increased computational resources
available, data-driven approaches are replacing or aiding expensive computational fluid dy-
namics (CFD) simulations. Here, an unsteady flowfield from an aspirated intake subjected to
a crosswind is used to delineate the flow features using image segmentation, where a convo-
lutional neural network (CNN) is used. Preliminary results from the comparison of two CNN
architectures are compared to identify regions of intake distortions such as the ground vortex or
a lip separation. Future work will be focussed on using these architectures to predict CFD flow
topologies, which will allow the rapid assessment of geometric changes at the design stage, and
substantially improve the overall time required in the performance evaluation of turbomachin-
ery components.
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1 INTRODUCTION

Machine learning techniques have gained popularity in recent years with deep learning tech-
niques applied to computational fluid dynamics (CFD) processes in the turbomachinery and
aviation industries [1]. These machine learning algorithms have been used to augment lower-
fidelity CFD models such as URANS (unsteady Reynolds–Averaged Navier–Stokes) with data
obtained from high-fidelity CFD models such as LES (large eddy simulation) to train the ma-
chine learning models, primarily with the aim to improve the modelling of turbulence. More
recently, convolutional neural networks (CNN) which are a class of deep neural networks, have
been used to predict the flow fields, and the lift and drag coefficients of airfoils for flow control
applications accurately ([2], [3]). Using a limited number of airfoil geometries and flow con-
ditions, Bhatnagar et al. [3] and Thuerey et al.[4] demonstrated that they were able to predict
the flow field and fluid quantities faster than RANS simulations for unseen airfoils with a root
mean square error of less than 10% across the flowfield. These deep learning methods usually
involve the use of UNET-type architectures involving an encoder and a decoder path. These
architectures have been used for the prediction of real-time flow solutions for hydrodynamic
applications ([5] ).

UNET is a fully convolutional neural network architecture that was developed for biomedical
image segmentation [6, 7] with a small dataset of images. The UNET architecture consists of
a contracting path and an expansive path resulting in a u-shape and giving the architecture
its name. At each level, there are two convolution operations followed by a rectified linear
unit (ReLU) operation and a max-pooling operation. The images are down-sampled in the
contracting path while the feature information is increased. On the decoder side, the transpose
of these operations is performed at each level. At each up-sampling level, the feature map from
the corresponding contracting level is concatenated and these are known as skip connections.
These skip connections provide high-resolution features to improve the performance of these
networks. The resulting output from the UNET architecture is a highly segmented map and
these are useful in biomedical imaging [8, 9]. Following the success of UNET, a range of
UNET architectures have been proposed (see [10]). Of these, UNET++ is purported to have an
overall gain over the conventional UNET architecture [11]. UNET++ consists of an encoder and
decoder sub-networks that are connected through a series of nested, dense skip pathways with
multiple convolutional blocks in between. The high-resolution feature maps from the encoder
network are enriched prior to concatenation with the corresponding semantically rich feature
maps from the decoder network, which in turn capture a finer foreground image compared to
the background [11].

In this study, we consider the results from a simplified aspirated intake geometry in ground
proximity, which has recently been used to validate CFD codes [12]. The intake is subjected to
crosswinds and a range of flow topologies are observed at the Aerodynamic Interface Plane(AIP).
Quantifying the losses at the AIP is significant from an aero-mechanical perspective, as the fre-
quencies associated with the distortion can have an impact on the forced response characteristics
of the downstream turbomachinery components. At low crosswind velocities, a ground vortex
forms which is ingested into the intake and at high crosswind velocities, the vortex begins to
oscillate leading to unsteady dynamics and larger distortion levels compared to lower crosswind
velocities. At higher crosswind velocities, lip separation is observed leading to a larger pressure
loss at the AIP. The flow dynamics for this generic intake configuration provide a range of CFD
flow topologies from the unsteady dynamics and thus a rich dataset of CFD images.

The remainder of this paper is organised as follows: section 2 deals with the numerical
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Figure 1: Schematic of the UNET and UNET++ architectures based on Zhou et al.[11]. Black blocks indicate the
original UNET architecture, green and blue show dense convolution blocks on the skip pathways, and red indicates
deep supervision. Red, green, and blue components distinguish UNET++ from UNET.

method used to generate the numerical data for the CFD simulations. Section 3 describe the
flow topology and the losses observed in an intake flow in ground proximity and the comparison
of the two UNET architectures used for semantic segmentation. This is followed by conclusions
in section 4.

2 NUMERICAL SETUP AND SOLVER

The geometry chosen for this study is the simplified intake proposed at the 5th Propulsion and
Aerodynamics workshop [13] in January 2020, and is based on the experimental and numerical
studies from Cranfield University [14, 15, 16, 17]. The cross-sectional view of the intake is
shown in Fig. 2(a). The intake lip has a 2:1 elliptical profile and the AIP/fan-face is located
0.7Di downstream of the intake highlight plane. The length of the intake is 8.4Di and the intake
exit boundary is approximately 7.7Di downstream of the intake lip. For the CFD simulations
in this study, the intake was placed in a computational domain which was 48Di in length as
measured from the start of the inlet to the exit boundary, 30Di in width and 15Di in height
(figure 2(b)). The intake was placed 0.25Dl above the ground plane. The Reynolds number
was set to ≃1×106 based on the intake diameter (Di) and the intake velocity Ui. The intake
exit boundary was set as a mass flow boundary condition with an intake mass flow rate of
ṁ=1.46kg/s, and the corresponding value of the fan-face Mach number was MAIP = 0.55 or
the equivalent capacity Q = 0.0332. The non-dimensionalised velocity U∗ is defined as the
ratio of the intake velocity (Ui) to the crosswind velocity (U∞). The left-hand face (looking
upstream of the intake) was assigned a velocity inlet boundary condition and the right-hand
face was assigned the outlet boundary, and the remaining boundaries were assigned a symmetry
boundary condition.

A three-dimensional time-accurate finite volume numerical solver (AU3D), was employed to
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Figure 2: (a) Cross-sectional view of the axisymmetric intake with an elliptical lip showing the major dimensions
of the intake in terms of the intake diameter (Di). The intake is located at a height h/Dl = 0.25 from the ground
plane. Image reproduced from the PAW participant guide [13]. (b) The dimensions of the computational domain
used, with the flow from the left-hand side of the intake.

solve the Favre-averaged Navier–Stokes equations, which has been developed at Imperial Col-
lege London together with Rolls Royce plc [18, 19]. The code uses a time implicit algorithm
which is second-order accurate in both space and time. The turbulence model used was a stan-
dard Spalart-Allmaras model implemented in the code. The numerical solver is capable of sim-
ulating both steady and unsteady flows, and has been widely used to perform aero-mechanical
computations involving flows in turbomachinery and aero-engine intakes [20, 21, 22].

3 PRELIMINARY RESULTS

3.1 Flow Topology

For the intake subjected to a low crosswind (U∗ ≳ 15), a ground vortex is ingested into the
intake with a vortex forming on the windward side at approximately a 5 o’clock position at the
Aerodynamic Interface plane. As the crosswind velocity is increased, the ingested vortex begins
to oscillate periodically. The magnitude of the distortion of the vortex varies as it oscillates
(13 ≲ U∗ ≲ 6) with the vortex appearing on the leeward side at reduced strength. For high
crosswind velocities (U∗ ≲ 6), a windward side lip separation is observed together with the
ground vortex and for even higher crosswind velocities of U∗ ≲ 4.55, the ground vortex is
transformed to a trailing vortex and a distinct vortex does not form at the AIP. The distortions
measured at the AIP were within the range of values observed by various researchers at the
5th Propulsion and Aerodynamics workshop [22]. In this study, we consider two crosswind
conditions, one at U∗ ≃ 6.1 and the other at U∗ ≃ 5.25. The former shows only the presence of
a ground vortex and the trailing vortex at approximately 10-12 o’clock position, while the latter
shows a large windward lip separation. These simulations were run for several through-flows
post-transience, and the intake pressure recovery (IPR = Po/Po,∞) at the AIP was monitored.
The distortion metrics were aperiodic and this was primarily associated with the meandering of
the ground vortex.

Figure 3 shows the contours of IPR at the AIP for the two crosswind conditions investigated.
For U∗ ≃ 6.1, the ground vortex oscillates between the 5 and 7 o’clock positions at the AIP
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(a) To (b) To+0.04s (c) To+0.08s (d) To+0.12s

(e) To (f) To+0.00375s (g) To+0.0075s (h) To+0.01125s

Figure 3: Contours of IPR at the AIP at the specified time-instants for (a)-(d): U∗ ≃ 6.1; where the contour
limits are between 0.073 (blue) and 1.018 (red); and (e)-(h): U∗ ≃ 5.25, where the contour levels are between 0.68
(blue) to 1.004 (red). For U∗ ≃ 6.1, only the ground vortex is observed at the AIP and for U∗ = 5.25, a windward
side lip separation is observed along with the ground vortex. Flow is from left to right in these images.

with the distortion levels varying over this time period. At the higher crosswind velocity of
U∗ ≃ 5.25, the lip separation is observed with the ground vortex occasionally meandering to the
leeward side. The shape and size of the lip separation vary with time. For the higher crosswind
condition, the distortion is higher on account of the lip separation leading to a large loss in
Po, AIP . Over the course of these two simulations, there are variations in the total pressure
loss at the AIP resulting in a rich dataset of images for the training using a convolution neural
network for each crosswind condition. The snapshots for U∗ ≃ 6.1 and 5.25 were spaced
3.75×10−4s and 7.5×10−5s apart.

3.2 Image segmentation

For the image segmentation, the images of total pressure contours from the two URANS
simulations above were captured at the AIP. The images were then scaled to 512×512 pixels
and converted to grayscale. The ground truth or the masks were generated by inverting these
images to obtain a black-and-white image of the same dimension. The objective of the work is
to discern the region of total pressure loss such as the ground vortex or the windward side lip
separation (Fig. 3) from the flow field and the masks provided a fairly accurate representation
of the regions of distortion. Images in each set were then categorised into training, validation
and test datasets. Two architectures of the UNET family were used; first, the default UNET
architecture, and the second, UNET++, which has multiple encoders to generate strong features
from the input image. For the purposes of this study, openly available codes for UNET ([23]
and UNET++ architectures ([24]) were used. The hyperparameters - batch size and epochs used
for the comparison of the two cases were 10 and 20, respectively. The same number of training,
validation and test images were used for a direct comparison between the two architectures and
are listed in Table 1. For the image sizes specified, the UNET architecture took approximately
one hour while UNET++ took approximately six hours due to its dense skip connections running
on sixteen CPU’s with an average use of 25GB of RAM.
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Table 1: Topology of the UNET architecture used in Data Set Training and Testing.

U∗ Training data size Validation data size Testing data size
6.1 1000 50 50
5.25 2500 100 100

Fig. 4 shows the comparison of the two architectures in relation to the ground truth and the
original grayscaled image of the total pressure contour of the AIP for U∗ ≃ 6.1 and 5.25. A
random image from the test dataset was chosen for the back-to-back comparison of the two
architectures. For both crosswind conditions, UNET seems to closely predict the features of the
vortex features such as the separation along the shroud (Fig. 4(c)), and the entire extent of the
vortex is captured well with UNET. In contrast, UNET++ typically captures a smaller region of
the vortex or the lip separation (Fig. fig:1d and 4(h)) and also captures the centre of the vortex
which is represented by a darker colour (the deeper shade of blue as seen in the colour images
in Fig. 3(c)).

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4: Comparison of the outcomes of the two UNET architectures for a random instantaneous snapshot
of the total pressure contours at the AIP. (a),(e) Gray-scaled contour of the total pressure contours. (b), (f) The
corresponding ground truth or mask used. (c), (g) the predicted output from UNET and, (d),(h) the predicted mask
from UNET++. Top row: U∗ ≃ 6.1; bottom row: U∗ ≃ 5.25. Flow is from left to right in these images. The
intake lip separation is observed on the windward side for U∗ ≃ 5.25.

Thus, the two UNET architectures are successfully able to predict the segmentation of the
flow features from the background and qualitatively demarcate the regions of distortions.
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4 CONCLUSION AND FUTURE WORK

In this study, a simplified aspirated intake was used as a test case to investigate the flow
dynamics when subjected to a crosswind. The rich dataset generated from the flow simula-
tions provides a host of images which were used for semantic segmentation using UNET and
UNET++ architectures. The images from the CFD simulations were trained using the two ar-
chitectures and small differences pertaining to the size of the distortion were observed. Further
investigations are currently underway to optimise the number of training images/epochs re-
quired for the accurate segmentation of such images. Future work is aimed at developing fluid
dynamic predictions based on UNET architectures [5, 25, 26, 27].
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Abstract. This paper presents a parameterization-free framework for aerodynamic shape op-
timization based on the continuous adjoint method; the optimization controls a field of virtual
boundary displacements and requires a regularization which acts on the aforementioned (likely
noisy) field to transform them into a smooth displacement field, used to update the baseline ge-
ometry. Two different regularization approaches, based either on a Laplace-Beltrami equation
solved on the surface of the designed geometry or a p-Laplacian equation solved in the entire
computational domain, are utilized and assessed. To smoothly fade out the computed displace-
ments close to the fixed part of the body shape (if any) and enforce a seamless synthesis of the
optimized and fixed parts of the geometry, a proximity smoothing technique is also applied. The
whole chain is differentiated, introducing the adjoint to the regularization equations and lead-
ing to the computation of accurate sensitivity derivatives of the objective function. The tool is
implemented and tested on a 2D duct case as well as the optimization of the DrivAer car model.
The framework is developed by extending the adjointOptimisationFoam tool-set of OpenFOAM,
developed and made publicly available by the group of authors.
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1 INTRODUCTION

Shape optimization usually employs some kind of parameterization to control the shape be-
ing designed, either based on a CAD model, [12], or by directly controlling the CFD grid
(such as with a Free Form Deformation, FFD, tool [11]). These approaches have the advantage
of producing smooth geometries controlled by a relatively small number of design variables.
However, such a treatment may lead to sub-optimal solutions since these parameterizations re-
strict the design space. With an FFD tool, in particular, keeping certain parts of the designed
geometry fixed can become quite challenging as all nodes laying within the morphing lattice(s)
move when the positions of the control points change.

Alternatively, one could use the displacement of the boundary wall nodes or faces as the
design variables. However, the sensitivity derivatives of the objective function with respect to
(w.r.t.) the latter are often noisy, resulting to non-smooth optimized shapes. To deal with this
issue, some kind of regularization of the sensitivity derivatives, computed either explicitly, [15,
3] or implicitly, [4, 13, 8] must be employed; a schematic representation of such an approach is
given in fig. 1. The present work follows an implicit approach but formulates the optimization
problem in a way that does not regularize the sensitivity derivatives ad hoc. Instead, a new set
of design variables is introduced, which can be seen as the non-smooth vectorial displacement
of the boundary to be optimized. Then, regularization is applied to the design variables and
converts them to a smooth displacement field which can be used to update the shape. Adding
the adjoint to the regularization process into the (continuous) adjoint method, [10, 5], leads to
the computation of accurate sensitivity derivatives of the objective function w.r.t. these design
variables. This allows the utilization of state-of-the art update methods for the design variables,
like BFGS and, more importantly, allows the treatment of constraints (for instance through SQP)
as with any other parameterization; the latter is challenging with approaches that regularize only
the sensitivity derivatives [8].

The developed shape optimization framework is demonstrated with two regularization meth-
ods, one based on a Laplace-Beltrami equation solved only on the designed surface, [4], and
one based on a p-Laplacian equation solved in the entire computational domain, [8]. The two
variants are initially tested in a 2D internal aerodynamics case and, then, used for the drag
minimization of the DrivAer car model, [2]. The developed method is implemented within the
in-house variant of the publicly available adjointOptimisationFoam tool-set, programmed by
the group of authors within the OpenFOAM environment.

2 DESIGN VARIABLES AND SHAPE UPDATE

Let bfi , i ∈ [1, d] with d = 2(3) for 2D(3D) problems and f ∈ [1, Nf ] be a vector defined
on the Nf faces of the part of the geometry to be designed (active part of the geometry). In
what follows, superscript f will be used to indicate that a quantity is computed/stored on the
aforementioned boundary faces. The N =Nfd components of bfi stand as the design variables
of the optimization problem and can be seen as the (possibly non-smooth) displacement of each
boundary face from its original position xf,0

i . If bfi were used to directly update the positions
of the boundary faces through a gradient-based optimization algorithm, non-smooth geometries
might emerge, [15]; these can be attributed to the fact that the derivatives of the objective func-
tion J w.r.t. each bfi contain information about this face only, with no mechanism to enforce the
regularity of the final shape. Hence, some kind of regularization should be applied to obtain
a smooth boundary displacement, denoted by mi, i ∈ [1, d] in the continuous sense (or mf

i , as
seen from a discrete perspective). In this article, the mi field is computed through the solu-
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Initialize Solve flow eqs.

Compute objec-
tive function
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derivatives w.r.t. the
normal displacement

of the boundary points

Regularize sensi-
tivity derivatives

Compute boundary
point displacement

Update boundary and
interior mesh points

no

yes

Figure 1: Flow chart of a typical optimization workflow based on the regularization of the
sensitivity derivatives (as in [4, 15, 13, 8].)

tion of a regularization Partial Differential Equation (PDE) Rr
i , solved either on the designed

geometry or throughout the entire domain, see section 2.1. We, additionally, introduce the m̃i

displacement field as

m̃i = f(rg)mi, i ∈ [1, d] (1a)
f(rg) = min(−2r3g + 3r2g , 1) (1b)

where rg are geodesic distances from the interface of the active and fixed parts of the geometry,
normalized by rp, to be referred to as the proximity threshold. The purpose of eq. 1a is to
smoothly fade out mi values close to the fixed part of the geometry, maintaining C0 and C1

continuity, fig. 3b; any other function with similar attributes could be used instead of eq. 1b. We
will hereafter refer to the process described by eqs. 1 as the proximity smoothing.

Finally, the update of the coordinates of point p is given by

∆xp
i =

∑
f∈(p)

wfpm̃i
f (2)

where f ∈ (p) denotes all faces having p as a vertex and wfp are weights, computed using the
inverse distance of the face center of f to point p and normalized so that

∑
f∈(p) w

fp = 1. It
should be noted that, in order to fully define the updated geometry using only the initial one and
the design variables field, the displacement field is always added to the coordinates of the initial
geometry. For the same reason, Rr

i and f(rg) are solved/computed on the initial geometry at
any optimization cycle. The workflow of the proposed shape optimization framework is given
in fig. 2, after briefly explaining the rest of its constituents.

2.1 The regularization PDEs

Two regularization PDEs are used in this paper, one based on a Laplace-Beltrami operator
and solved on the active parts of the geometry and one based on a p-Laplacian PDE solved in
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the entire computational domain.

2.1.1 Laplace-Beltrami

The Laplace-Beltrami PDEs, [4], read

Rr,LB
i = −r2LB

∂2mi

∂x2
s,j

+mi − bi = 0, i ∈ [1, d] (3)

where
∂(·)
∂xs,j

is the gradient operator constrained on the active part of the geometry S; zero Neu-

mann boundary conditions are imposed on its boundary, ∂S. The solution of eq. 3 is the field
that minimizes an integral objective function comprising the smoothness of mi and its deviation
from bi, weighted through the regularization radius rLB. We choose to regularize the vectorial
displacement bi, instead of its normal component only, to also take in-plane regularization into
account. Eq. 3 is numerically solved using the Finite Area Method (FAM, [16]), which resem-
bles the Finite Volume Method (FVM) but is dedicated in solving PDEs which are constrained
on curved surfaces.

2.1.2 p-Laplacian

Inspired by [8], the p-Laplacian regularization PDE is defined through the computational
domain as

Rr,pL
i =

∂

∂xj

[
|∇m⃗|p−2 ∂mi

∂xj

]
= 0 (4)

with boundary conditions expressed by

rpL |∇m⃗|p−2 ∂mi

∂xj

nj +mi − bi = 0 (5)

where |∇m⃗| =
√

∂mk

∂xl

∂mk

∂xl
and rpL is a regularization radius. The non-linear diffusivity in eq. 4,

namely |∇m⃗|p−2, penalizes mesh areas with high deformation gradients, with higher p values
increasing this penalization. If p=2, eq. 4 corresponds to a Laplace equation with a Robin-type
boundary condition. According to eq. 5, regularization is mainly conducted in the normal to the
boundary direction, with in-plane regularization taking place due to the indirect connection of
adjacent boundary values through eq. 4. Eq. 4 is solved using typical infrastructure existing in
any FVM software. The solution of eq. 4 can also be used to update the positions of both bound-
ary and interior mesh nodes or, in other words, eq. 4 can also be used as the grid displacement
PDE.

3 COMPUTATION OF SENSITIVITY DERIVATIVES

The flow problem is governed by the Navier-Stokes equations for incompressible fluids, cou-
pled with the Spalart-Allmaras turbulence model, [14]. The detailed development of the con-
tinuous adjoint equations can be found in [10] and the computation of the sensitivity derivatives
of the objective function J w.r.t. the coordinates of a boundary point xp

i is conducted using the
the so-called E-SI continuous adjoint approach, introduced in [5]. Here, we focus exclusively
on differentiating the chain presented in section 2 to compute δJ/δbfi , starting from δJ/δxp

i .
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By applying the chain rule, we get

δJ

δbfi
=

Nf∑
l=1

d∑
j=1

δJ

δml
j

δmj
l

δbfi
(6)

δJ

δml
j

=
d∑

k=1

δJ

δm̃l
k

δm̃l
k

δmj
l

(7)

The derivative of J w.r.t. the face displacement field m̃k at a face l can be computed after taking
eq. 2 into consideration as

δJ

δm̃k
l
=

d∑
j=1

∑
p

δJ

δxp
j

δxp
j

δm̃k
l
=

d∑
j=1

∑
p

δJ

δxp
j

∑
f∈(p)

wfp
δxf

j

δxl
k

=
∑
p∈(l)

wlp δJ

δxp
k

(8)

where p ∈ (l) are the points that belong to face l. It is interesting to note that sensitivities
w.r.t. the face displacement are computed using a point-to-face interpolation using the same
weights used for the face-to-point interpolation of the boundary displacement, eq. 2. Another
interesting observation is that, in the case of the point-to-face interpolation of the sensitivities,

the interpolation weights do not sum up to one. Additionally, according to eq. 1a,
δm̃l

k

δmj
l
=

f(rlg)δkj , where δkj is the Kronecker symbol.
The computation of δmj/δb

f
i in eq. 6 would require the differentiation of eq. 3 or 4 w.r.t. bfi

which requires the solution of N differentiated regularization PDEs. To reduce this cost, the
adjoint to the regularization PDEs can be devised. This is developed separately for Rr,LB

i and
Rr,pL

i in subsections 3.1 and 3.2.

3.1 Adjoint to the Laplace-Beltrami (LB) PDE

Let us consider the Lagrangian function L = J −
∫
S
ΨLB

k Rr,LB
k dS, where ΨLB

i is the adjoint
to mi, as computed by eq. 3. Its derivative w.r.t. bfi reads

δL

δbfi
=

∫
S

(
1

∆S

δJ

δmk

+ r2LB
∂2ΨLB

k

∂x2
s,j

−ΨLB
k

)
δmk

δbfi
dS +

∫
S

ΨLB
k

δbk

δbfi
dS

+

∫
∂S

r2LBΨ
LB
k

∂

∂xs,j

(
δmk

δbfi

)
ns,j∂(dS)−

∫
∂S

r2LB
∂ΨLB

k

∂xs,j

ns,j
δmk

δbfi
∂(dS) (9)

where ns,j are the components of the normal vectors to ∂S, constrained on S. To facilitate the
derivation of the continuous adjoint to Rr,LB

i , the discrete form of eq. 6 was converted into the
first term in the first integral on the r.h.s. of in eq. 9, with ∆S being the local face area. To
avoid the computation of δmk/δb

f
i , its multiplier in the surface integral of eq. 9 is set to zero,

formulating the adjoint Laplace-Beltrami PDEs as

RLB
Ψk

= −r2LB
∂2ΨLB

k

∂x2
s,j

+ΨLB
k − 1

∆S

δJ

δmk

= 0 , k ∈ [1, d] (10)

with zero Neumann conditions on ∂S, which nullify the last term on the r.h.s. of eq. 9. The
third term on the r.h.s. of the same equation vanishes automatically due to the Neumann con-
ditions imposed on mi. After satisfying the adjoint Laplace-Beltrami PDEs and their boundary
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conditions, the sensitivity derivatives are given by

δL

δbfi
=

∫
S

ΨLB
k

δbk

δbfi
dS = ΨLB

i

∣∣f ∆Sf (11)

i.e. they are computed as the solution of the adjoint Laplace-Beltrami PDEs, multiplied by the
local face area. It is interesting to note that eq. 10 is the equivalent to eq. 3, with the sensitivity
derivative w.r.t. the face displacement being regularized, instead of the face displacement.

3.2 Adjoint to the p-Laplacian (pL) PDE

Following a similar process, we define L = J +
∫
Ω
ΨpL

k Rr,pL
k dΩ and differentiate it w.r.t. bfi

to get

δL

δbfi
=

∫
S

1

∆S

δJ

δmk

δmk

δbfi
dS +

∫
S

(p−2) |∇m⃗|p−4 ΨpL
k

∂mn

∂xl

∂mk

∂xj

nj
∂

∂xl

(
δmn

δbfi

)
dS

−
∫
S

(p−2) |∇m⃗|p−4 ∂Ψ
pL
k

∂xj

∂mn

∂xl

nl
∂mk

∂xj

δmn

δbfi
dS +

∫
S

|∇m⃗|p−2 ΨpL
k

∂

∂xj

(
δmk

δbfi

)
njdS

−
∫
S

|∇m⃗|p−2 ∂Ψ
pL
k

∂xj

nj
δmk

δbfi
dS +

∫
Ω

(p−2)
∂

∂xl

[
|∇m⃗|p−4 ∂Ψ

pL
n

∂xj

∂mn

∂xj

∂mk

∂xl

]
δmk

δbfi
dΩ

+

∫
Ω

∂

∂xj

[
|∇m⃗|p−2 ∂Ψ

pL
k

∂xj

]
δmk

δbfi
dΩ (12)

After differentiating eq. 5, the sum of the second and fourth integrals on the r.h.s. of eq. 12 is
transformed into integrals that contain only δmk/δb

f
i and eq. 12 becomes

δL

δbfi
=

∫
S

[
1

∆S

δJ

δmk

− ΨpL
k

rpL
− (p−2) |∇m⃗|p−4 ∂Ψ

pL
n

∂xj

∂mn

∂xj

∂mk

∂xl

nl − |∇m⃗|p−2 ∂Ψ
pL
k

∂xj

nj

]
δmk

δbfi
dS

+

∫
Ω

[
∂

∂xj

(
|∇m⃗|p−2 ∂Ψ

pL
k

∂xj

)
+ (p−2)

∂

∂xl

(
|∇m⃗|p−4 ∂Ψ

pL
n

∂xj

∂mn

∂xj

∂mk

∂xl

)]
δmk

δbfi
dΩ

+

∫
S

ΨpL
k

rpL

δbk

δbfi
dS (13)

To avoid the computation of δmk/δb
f
i , its multipliers in eq. 13 are set to zero, resulting to the

adjoint p-Laplacian PDEs

RpL
Ψk

=
∂

∂xj

(
|∇m⃗|p−2 ∂Ψ

pL
k

∂xj

)
+ (p−2)

∂

∂xl

(
|∇m⃗|p−4 ∂Ψ

pL
n

∂xj

∂mn

∂xj

∂mk

∂xl

)
= 0, k ∈ [1, d]

(14)

and their boundary conditions

|∇m⃗|p−2 ∂Ψ
pL
k

∂xj

nj +
ΨpL

k

rpL
+ (p−2) |∇m⃗|p−4 ∂Ψ

pL
n

∂xj

∂mn

∂xj

∂mk

∂xl

nl −
1

∆S

δJ

δmk

= 0 (15)
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Finally, the sensitivity derivatives are given by

δL

δbfi
=

∫
S

ΨpL
k

rpL

δbk

δbfi
dS = ΨpL

i

∣∣∣f ∆Sf

rpL
(16)

It is interesting to note that for p ̸= 2 and for the initial geometry with mi=0 everywhere, eq. 4
is not differentiable due to the presence of |∇m⃗|p−2. One can, however, start the optimization
with p=2, in which case eqs. 14 and 15 simplify to

RpL
Ψk

=
∂2ΨpL

k

∂x2
j

= 0 (17a)

∂ΨpL
k

∂xj

nj +
ΨpL

k

rpL
− 1

∆S

δJ

δmk

= 0 (17b)

and increase p in the subsequent optimization cycles.
A flow chart of the complete shape optimization framework is given in fig. 2.

4 APPLICATIONS

The shape optimization workflow summarized in fig. 2 is initially applied to the optimization
of a 2D S-shaped duct and, then, to the DrivAer car model.

4.1 S-shaped duct

The shape optimization of the S-shaped duct of fig. 3a, targets the minimization of total
pressure losses between its inlet and outlet. The flow is laminar with Re=1000, a structured
grid of 24K cells is used and the active part of the geometry contains 226 faces located on the
two curved parts of the boundaries, leading to 452 design variables. L-BFGS, [6], is used to
update the design variables, coupled with a line-search approach that satisfies the strong Wolfe
conditions, [9], and the boundary displacement is propagated to the interior grid nodes using
the Inverse Distance Weighting method, [7]. Optimizations run for 20 cycles at most, unless the
relative reduction in the J value between two optimization cycles is smaller than 10−4.

The workflow of fig. 2 is applied using both the Laplace-Beltrami (LB) and the p-Laplacian
(pL) as regularization PDEs. In all cases, rp=0.5m (see section 2), compared to the length of
the active part of the geometry which is 2m. The distribution of the proximity filter, f(rg) in
eq. 1b, along the length of the initial geometry is shown in fig. 3b.

Concerning the LB regularization, it can be observed that rLB∈ [0.25, 1]m lead to optimized
geometries with almost the same J value, fig. 4a, even though the resulting geometries differ
noticeably from each other, fig. 4b. From the same figure, we can observe that larger rLB values
lead to geometries with larger wavelength features, as expected. Additionally, increasing rLB
beyond a certain threshold (4m in this case) does not seem to have any impact on the optimized
geometry or the convergence of the optimization (in figs. 4a and 4b , curves corresponding
to rLB = 4m and 5m practically coincide). This can be interpreted by viewing rLB as the
equivalent smoothing radius of an explicit regularization method using a Gaussian kernel, [15],
above which all nodes of the surface are taken into consideration when computing δJ/δbfi for
a specific face. Fig. 5 compares the values of δJ/δbfi , for various rLB radii, with the values
of δJ/δm̃i

f (i.e. the regularized and non-regularized sensitivities). It can be observed that
larger rLB values gradually smooth out the picks of the non-regularized sensitivities, up to a
point where increasing rLB further has no impact on the result. Finally, the virtual and actual
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Figure 2: Flow chart of the proposed optimization workflow.
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displacements corresponding to the optimized duct geometry computed with rLB = 0.2m are
plotted in fig. 6. The impact of proximity smoothing close to the boundaries of the duct is
evident, with regularization seemingly playing a smaller role in this case.
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Figure 3: S-shaped duct: (a) active part of the geometry and mesh, focused around the S-shaped
part of the duct (the mesh is further extended upstream and downstream) and (b) the distribution
of the proximity smoothing function of eq. 1b.
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Figure 4: S-shaped duct: (a) convergence history, normalized with the first J value, and (b)
shapes (not in scale) of the optimized ducts obtained using LB regularization with different
regularization radii, rLB.

The convergence history and optimized geometries obtained using the pL regularization with
different rLP values and p = 2 are presented in figs. 7a and 7b, respectively. Smaller rpL
values tend to produce geometries with smaller J values. Additionally, geometries obtained
using different rpL values do not differ significantly from each other, even for large rpL values.
This can be justified by examining the δJ/δbfi values for various rpL in fig. 8. From there, it
can be observed that increasing rpL beyond a certain value seems to only scale the sensitivity
derivatives with 1/rpL, without changing their spatially distribution significantly. This indicates
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Figure 5: S-shaped duct: sensitivity derivatives of J obtained using LB regularization with
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f . Curves corresponding to rLB=4m and 5m are practically indistinguishable.
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Figure 6: S-shaped duct: x (left) and y (right) components of the virtual (⃗b) and actual ( ⃗̃m) face
displacement fields, plotted over the lower and upper walls of the LB optimized geometry, with
rLB = 0.2m.

that the p-Laplacian regularization cannot smooth out certain features of δJ/δm̃i
f ; the impact

of this will become apparent in the optimization of the DrivAer car model.
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Figure 7: S-shaped duct: (left) convergence history and (right) shapes of the optimized ducts
obtained using pL regularization with different rLP values and p=2.
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Figure 8: S-shaped duct: sensitivity derivatives of J obtained using pL regularization with dif-
ferent rpL values and p=2; all regularized sensitivities are multiplied with their corresponding
rpL value. Curves labeled with “base” correspond to the non-regularized sensitivities, δJ/δm̃i

f ,
and have been divided by 10 to fit into the scale of the plot.
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4.2 DrivAer Car Model

The shape optimization framework described in section 2 is applied to the drag minimization
of the fast-back configuration of the DrivAer car model, with a smooth underbody, with mirrors
and wheels (F S wm ww). A CFD grid of approximately 5.3 million cells is used to model
half of the car, the simulation includes a moving road, rotating wheels (through an appropri-
ate boundary condition, since the wheels are closed) and turbulence is modeled by means of
the Spalart-Allmaras model with wall functions. Since a steady state primal solver is used, J
cannot reach a constant value within each optimization cycle but oscillates around a “mean”
value. Each flow evaluation performs 5500 iterations and the objective function results from the
averaging of the last 3500 of them.

The active part of the geometry includes the back side of the car, excluding the rear window,
and the diffuser, fig. 9. Before performing an optimization, an investigation is first made on
the impact of the regularization radii in eq. 10 and 15 on δJ/δbfi . For this purpose, the latter is
computed for various rLB and rPL values and its projection to the local unit normal vector (the
so-called sensitivity map) is compared with the non-regularized sensitivity field, (δJ/δm̃i

f )nf
i ,

in figs. 10 and 11. Sensitivities regularized with LB do not change significantly above rLB =
2m and all small wavelength features have been smoothed out. This is the rLB value used in
the optimization. On the other hand, and in agreement with what was observed in fig. 5 for
the S-shaped duct, pL cannot smooth out the small wavelength features of the sensitivities,
irrespective of the rpL value. The sensitivity maps obtained using pL and rpL > 0.5m appear
similar to the ones obtained with LB and rLB = 0.1m, i.e. the smallest value from the ones
tested herein. For the pL-based optimization that follows, rpL=10m is used.

Figure 9: DrivAer: The active part of the geometry, i.e. the part allowed to move during the
optimization, is colored in red. Only half of the geometry is simulated, using symmetry condi-
tions. The geometry is then, mirrored, for visualization.

Having picked a proper value for the regularization radius, two optimizations were performed
based on the two regularization approaches. Twenty optimization cycles were performed using
the Conjugate Gradient method, [1], to update the design variables; the two optimized geome-
tries will be referred to as gLB and gpL, from the initials of the corresponding regularization
methods used to design them. Irrespective of the regularization method used, the boundary dis-
placement is propagated to the interior using eq. 4 with p=4 and Dirichlet conditions computed
through eq. 2. The gLB geometry led to a 5.1% drag reduction while the gpL one had a 14.7%
reduction. The large difference in drag reduction can be attributed to the fact that LB filtered
all small-scale features of the sensitivities leading to a much smoother shape while pL retained
some of these features, leading to better performance but also to a less aesthetically pleasing
and potentially non-manufacturable solution. Despite this, the complex gpL geometry show-
cases the robustness of the shape optimization framework. The geometries obtained from the
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(a) Regularization based on the adjoint Laplace-Beltrami and different rLB

(b) Regularization based on the adjoint p-Laplacian and different rpL

Figure 10: DrivAer: Non-regularized (starboard side) and regularised (port side) sensitivity
derivatives of the baseline geometry, projected on the unit normal vector; the regularization
involves the adjoint LB and adjoint pL PDEs, for various rLB and rpL values (0.1m (top-left),
0.5m (top-right), 2m (bottom-left), 10m (bottom-right) in each set of figures); sensitivity values
computed using p-Laplacian have been multiplied with their corresponding rpL. Blue colour
(negative normal derivatives) indicates areas that should be pushed inwards to reduce drag while
red areas (positive normal derivatives) should be pulled outwards. Zero sensitivity isolines are
depicted in white.

two optimizations are shown in fig. 12 while fig. 13 depicts the cumulative normal displacement
from the baseline geometry. Finally, the comparison of the cumulative normal displacement and
the projection of the design variables field to the unit normal vector of the baseline geometry is
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(a) Regularization based on the adjoint Laplace-Beltrami and different rLB

(b) Regularization based on the adjoint p-Laplacian and different rpL

Figure 11: DrivAer optimization: Effect of the regularization radius on the sensitivity deriva-
tives. Notation and regularization radii as in fig. 10 (from left to right, 0.1m, 0.5m, 2m and
10m).

given in fig. 14. The effect of the regularization PDEs on the displacement field can mostly be
spotted on the bottom and back sides of the optimized geometries.

Figure 12: DrivAer: Comparison of the optimized geometries obtained with LB (left column)
and pL (right column) with the baseline one. In all figures, optimized geometries are shown on
the port side and the baseline on the starboard side.
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Figure 13: DrivAer: Cumulative normal displacement of the LB-based (left) and pL-based
(right) optimized geometries from the baseline one. Blue/red areas have been displaced in-
wards/outwards.

Figure 14: DrivAer: Cumulative normal displacement (starboard side) and projection of the
design variables field to the unit normal vector of the baseline geometry (bfi n

f
i , port side) of

the LB-based (top) and pL-based (bottom) optimized geometries. Blue/red areas have been
displaced inwards/outwards.
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5 SUMMARY - CONCLUSIONS

A parameterization-free shape optimization framework was developed within adjointOpti-
misationFoam through a chain of tools that link a field of design variables, defined as one
vector per boundary face, to the boundary displacement from the baseline geometry, using a
regularization phase and a proximity smoothing. Regularization was performed using either
the Laplace-Beltrami or the p-Laplacian PDEs. Defining such a chain and differentiating it
introduces the adjoint to the regularization PDEs and leads to the computation of accurate sen-
sitivity derivatives w.r.t. the design variables, which allows the utilization of any method to
update them, such as L-BFGS; this is an advantage over methods that regularize the sensitivity
derivatives ad hoc. This framework was applied to the optimization of a 2D S-shaped duct
and the DrivAer car model. In both cases, regularization based on the Laplace-Beltrami PDE
proved capable of removing small wavelength features from the sensitivity derivatives and the
optimized shapes while the p-Laplacian PDE, with p = 2, allowed such features to appear in
the optimized geometry, even when using a high regularization radius. Despite the p-Laplacian
regularization leading to an irregular optimized geometry in the case of the DrivAer model, the
fact that its performance in terms of drag reduction was significantly better than that obtained
with the Laplace-Beltrami approach (∼ 15% reduction compared to ∼ 5%) indicates that such
small wavelength features can indeed be desirable from the aerodynamics point of view.
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Abstract 

Bio-inspired thrusters based on flapping-foils have been proposed as an alternative to conven-

tional rotary propellers for autonomous underwater vehicles (AUVs). By mimicking the swim-

ming mode found among a group of vertebrates, such as sharks and marine mammals, flapping-

foils have the potential to achieve very high propulsive efficiency, thus allowing for an extension 

of the overall operational capabilities of AUVs that come with energy range limitations. At the 

same time, their low frequency operation provides stealth in terms of acoustic noise which is 

essential for oceanic exploration and observation of marine life. This work is dedicated to the 

hydrodynamic optimization of a concept flapping-foil thruster under nonlinear constraints re-

garding the thrust coefficient and effective angle of attack. We investigate the effects of a wide 

range of geometric and kinematic parameters including prescribed active deformation, in the 

sense bending and twisting to the overall performance of the wing. Each candidate design is 

evaluated using a cost-effective GPU-accelerated boundary element solver (BEM) that is de-

veloped to facilitate the optimization process.  

Keywords: Active deformation, flapping-foils, biomimetic thruster, hydrodynamic optimiza-

tion, boundary element method (BEM), GPU-accelerated solver. 
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1 INTRODUCTION 

Bio-inspired thrusters based on flapping-foils have been proposed for the propulsion of au-

tonomous underwater vehicles (AUVs) due to certain advantages they hold over conventional 

rotary propellers. To name a few, they have the potential to achieve high efficiency, advanced 

maneuverability, and their eco-friendly low-frequency operation emitting low acoustic noise 

translates into adequate stealth for oceanic exploration and observation of marine life; (Won-

Shik, et al. 2012), (Neira, et al. 2021). The thrust-producing thunninform kinematics found 

among a group of vertebrates, such as sharks and marine mammals; see, e.g., (Sfakiotakis, Lane 

and Davies 1999) and (Lauder 2000), have been successfully modeled as a combination of 

heaving and pitching rigid body motions with an extensive database of numerical and experi-

mental research that has inspired many swimming robot prototypes, such as the MIT RoboTuna 

(Barrett 1996). The geometry of caudal and pectoral fins also provides abundant inspiration for 

the design of new efficient wings with favorable lift/drag ratios, good dynamic stall character-

istics. For instance, the distinctive morphology of the humpback whale pectoral fins allow them 

to delay dynamic stall by introducing vortex generation in the vicinity of the leading edge (Wei, 

New and Cui 2015), (Shi, et al. 2016). Humpback-whale inspired fins have made their debut in 

the twin-rudder of the Club Swan 36 yacht from Nautor Swan (see: https://www.nau-

torswan.com/yachts/models/clubswan36/). 

However, fins in nature are elastic and can deform both actively and passively under hydro-

dynamic load excitation, contributing to the exceptional abilities of aquatic swimmers, both in 

terms of cruising at high efficiency and advanced maneuverability (Shyy, et al. 2014). Appli-

cations of actively deforming (or shape changing in the sense of morphing) wings in the field 

of naval architecture are quite limited. They can be found among technologies of wing stabi-

lizers with actively controlled flaps, such as the type-S retractable fin stabilizer by (SKF n.d.), 

and the anti-rolling MR-Series of (Mitsubishi n.d.). In addition, interesting designs have 

emerged from the studies conducted for the America’s Cup racing sailboats, where safety fac-

tors are kept to minimum to attain maximum performance (Parolini and Quarteroni 2005). 

Many racing and fast-cruising foiling sailboats use state-of-the-art actively controlled foils and 

appendages; see, e.g., the methodology proposed by (Amoroso, et al. 2021) for the seakeeping 

of a flying yacht or the split-flap concept for the T-foil of a sailing yacht (Prabahar, Persson and 

Larsson 2022).  

However futuristic the concept of actively deforming wings seems, research on this topic 

contributes to the vision of bio-inspired and more energy efficient thrusters and energy-saving 

devices for the maritime industry. To provide a short background on the use of active defor-

mation for the control of lifting surfaces, it is important to mention that technologically, this 

concept was initially introduced in aeronautics as a means of meeting the varying demands of 

flight scenarios; e.g., (Moran 1984), (Barbarino, et al. 2011) and (Li, et al. 2018).  

The demands of aviation are different from marine propulsion; however, the abundant liter-

ature on morphing airfoils and wings provides valuable insight for the present project, which 

aims to reveal trends for hydrofoil energy-minimizing kinematics. In addition, deforming 

morphing foils have a wide range of applicability ranging from small-scale wave/current energy 

harvesting systems to full-scale energy-saving systems for ships in wavy seas; (Ntouras, 

Papadakis and Belibassakis 2022), (Belibassakis, Filippas and Papadakis 2021). The following 

link contains additional information regarding the Seatech Horizon 2020 project entitled “Next 

generation short-sea ship dual-fuel engine and propulsion retrofit technologies” 

(https://seatech2020.eu/) that studies flapping-foils as auxiliary ship thrusters with wave energy 

harvesting capabilities. 
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In the present work, we attempt to integrate some of these features into the design of a flap-

ping-foil thruster for a realistic AUV propulsion scenario. Our contribution consists of devel-

oping a cost-effective potential-based solver with GPU-acceleration features to predict the 

hydrodynamic forces and the propulsive performance of wings that undergo prescribed but ar-

bitrary motions. The GPU-BEM computational tool is then used for the hydrodynamic optimi-

zation; in terms of propulsive efficiency maximization, of the flapping-foil thruster with 

geometric and kinematic parameters as design variables under constraints determined based on 

the examined propulsion scenario. The design variables examined are the sweep angle and the 

taper ratio that determine the wing planform, the amplitudes of the heaving and pitching mo-

tions, forcing frequency (Strouhal number) as well as the amplitudes of chordwise/spanwise 

bending and twisting (active deformation). The constraints target the thrust coefficient require-

ment and the maximum allowable effective angle of attack. The findings of the optimization 

studies are presented and discussed with an aim to reveal trends for the design of efficient flap-

ping-foil thrusters. The findings of this work highlight certain trends that have the potential to 

enhance the propulsive performance of flapping-foil thrusters, whereas the study of active de-

formation effects broadens the design space of wings for future thruster applications.  

2 FLAPPING-FOIL THRUSTER 

Aiming towards a complete redesign of the main propulsion system of an autonomous un-

derwater vehicle (AUVs) that satisfies the initial design specifications; based on a realistic pro-

pulsion scenario, we came up with the design concept shown in Figure 1. The total resistance 

consists of friction resistance (based on the ITTC curve) and wave resistance predicted using 

the methodology presented in (Belibassakis, Gerostathis, et al. 2013). We assume that for the 

AUV mission a cruising speed of U=2.52m/s is to be maintained with CT=0.32 thrust coefficient 

at the highest propulsive efficiency possible. The details of the examined propulsion scenario 

are shown in Table 1. The reference thruster that serves as the basis for the optimization study 

that follows, corresponds to a rigid wing design that performs prescribed heaving/pitching mo-

tions and satisfies the thrust requirement.  

The examined cruising speed is low and therefore the device is in no risk of cavitation. How-

ever, if higher speeds were to be examined cavitation prevention criteria should be taken into 

account in future work; see, e.g., (Liao, Martins and Young 2021). In this work we use NACA 

0012 sections, and the planform shape is parametrized using the sweep angle and the taper ratio 

(Moran 1984). However, we are aware of the fact that NACA series hydrofoil sections yield 

high pressures at the suction side near the vicinity of the leading edge which at high inflow 

speeds is at risk of cavitation. In that sense, for high cruising flapping-foils near the free-surface 

more suitable sections will be examined in future work.  

Table 1. Propulsion scenario 

AUV Characteristics 

Geometry prolate spheroid (5:1:1) 

Length overall 5OAL m  

Wetted surface 212.55wetS m  

Submergence depth / 0.16d L  

Operation velocity 2.52 /U m s

Froude number ( ) 0.36Fr L   

Friction coefficient 

 2/ 0.5F F wetC R U S

0.003FC   
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Wave resistance 0.0058WC   

Total resistance 

 TOT F WC C C 

0.0083TOTC   

Thrust requirement 0.32TreqC 

Reference flapping-foil thruster 

Dimensions (chord, span) 0.33 ,  1.0c m s m   

Heaving amplitude  
0 / 0.75h c 

Pitching amplitude 
0 23o 

Phase difference 90deg  

Strouhal number 

0( 2 / )Str h f U  

0.26Str   

Pivot axis / 3c  

Figure 1. Schematic representation of the AUV body and thruster configuration (highlighted with blue). 

2.1 Fish-inspired kinematics  

The heave and pitch motions are based respectively on the following harmonic functions 

( ) sin( )oh t h t (1) 

( ) sin( )ot t      (2) 

where the pivot axis for the pitch is positioned at / 3RX c . A forward translation motion 

( )s t Ut  ; towards the negative y-axis, simulates the AUV propulsion scenario, thus the free-

stream velocity is assumed to be zero and shear current effects are neglected. The following 

transformation maps the wing surface in the body-fixed coordinate system xyz to the global 

coordinate system XYZ, 

{ } [ ] { } { },i i i iX Q x     (3) 

( )cos ( ) 0 sin ( )

[ ] ,{ } ( ) 0 ,0  1  0  

( )sin ( ) 0  cos ( )

i i

s

s tt t

Q f t

h tt t

 

 

   
     
  
     

 (4) 

where 2( ) 1 exp( ( / ) ), 1.5s o of t f t T f     is filter function permitting smooth transition between 

rest and a fully developed state of oscillatory motions. 
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2.2 Active deformation 

The body-fixed coordinate system xyz is such that the center (0,0,0) is placed at the intersection 

of the pivot axis and the root section of the wing; as shown schematically in Figure 2. The 

positive x-axis is directed towards the chord length of the wing’s sections facing the trailing 

edge and the y-axis towards the spanwise direction. The positive z-axis is determined using a 

clockwise notation. 

2.2.1 Spanwise bending/twisting 

Regarding the out-of-plane active deformation the linear bending (G1) and quadratic twisting 

(F1) angles from (Stanford and Beran 2010) are considered,  

1 2 | | /G y s (5) 

 
2

1 2 | | /F y s (6) 

where [ / 2, / 2]y s s    with s denoting the span of the wing in the body-fixed reference frame. 

Each expression is then multiplied with a time-varying harmonic amplitude, 

1 1 11 1 1( , ) ( ) ( ),        ( ) sin( )o o b b bt t G t A t        x x (7) 

1 1 11 1 1( , ) ( ) ( ),        ( ) sin( )o ot t F t t           x x  (8) 

where 
1 1
,bA A  denote the amplitudes and 

1 1
,b   the phase differences. The frequency is kept 

the same as the heaving/pitching motions. It is important to note that although these quantities 

are considered known prior to each simulation, proper tuning is accomplished via optimization. 

Regarding the deformed mesh (i) the bending angle ( , )o tβ x  for each cross-section in the yz-

plane is translated into a lateral displacement along the span of the wing and (ii) the twisting 

angle ( , )o tγ x  is used to rotate each cross-section in the xy-plane; as shown see Figure 2. 

Figure 2. Prescribed active morphing shapes based on (a) linear bending angle and (b) quadratic twisting angle 

on the body-fixed coordinates system xyz. 

2.2.2 Hydrofoil section adjustment 

We introduce the following scenario of a time-varying chord-line deformation that is uniform 

in the spanwise direction shown schematically in Figure 3,  

2

0,   (0, ]
( , )

( ) sin( ),    ( , ]

o R

c o

o R c c o R

x X
y x t

x X A t x X c 


 

  

(9) 
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where sin( )c cA t   denotes the amplitude of morphing, c  the phase difference. In addition, 

the motion of the fore part of the hydrofoil from the leading edge (LE) to the pivot point is 

restricted and the morphing affects the rest of the hydrofoil section. Maximum displacement 

occurs at the trailing edge (TE) region.  

 
 

Figure 3. Hydrofoil section at maximum chordwise displacement for Ac=0.08c, ψc=π/2 at t=0s based on Eq. (9) 

described above. 

2.3 Propulsive performance metrics 

The instantaneous lift, thrust and moment (with respect to the pivot axis) can be calculated 

using the following formulas, 

 2 1
ˆ( ) / 0.5 ,

B

L p

D

C L t U cs C ds
A




    n y  

 

(10) 

 2 1
ˆ( ) / 0.5 ,

B

T p

D

C T t U cs C ds
A




   n x  

 

(11) 

 2 2 1
( ) / 0.5 ,

B

M p

D

C M t U c s C ds
Ac




    n r  

 

(12) 

where A denotes the planform area, and r is the reference vector for the calculation of the mo-

ment.  

To estimate the propulsive efficiency (Froude efficiency) η for the actively deforming wing, 

it is essential to take into consideration not only the power required to sustain the rigid-body 

motions but also an estimate for the power required to produce the changes in geometry. Thus, 

we calculated the efficiency (η) as follows, 

 / .Pout PinC C   (13) 

where    3 3/ 0.5 ,  / 0.5Pout out Pin inC P U A C P U A    and  

 
0

1
( )

pT

out

p

P T t Udt
T U

   
(14) 

 
0

1
( ) ( ) ( ) ( ) ( )

pT

in deform

p

P L t h t M t t P t dt
T U

    
(15) 

with Tp denoting the period of the harmonic motion, T(t) is the instantaneous thrust and U the 

forward motion velocity. All motions share the same frequency. The power required to sustain 
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the active morphing; see, e.g., (Li, Pan and Zhang 2011) and (Neef and Hummel 2002) for a 

similar formulation, can be estimated as, 

1
( ) ( ; ) ( ; ) ( ; )deform p deform

D

P t C t t t ds
A



  x n x V x  (16) 

where ( ; )pC tx  is the instantaneous pressure coefficient and ( ; )deform tV x denotes the instantane-

ous velocity component solely due to the active deformation; which is directly linked to the 

active deformation parameters introduced in Section 2. 

3 MATERIALS AND METHODS 

For the evaluation of the propulsive performance of flapping-foil thrusters that undergo pre-

scribed chordwise and spanwise active deformation, we extended the boundary element method 

(BEM) developed by (E. Filippas 2019) with results concerning the method validation and 

various applications in (Filippas, Papadakis and Belibassakis 2020) and (Papadakis, Filippas, 

et al. 2019). The code includes GP-GPU acceleration features targeting the computationally 

demanding numerical integration for the calculation of the induced coefficients using the pro-

cessors of an NVIDIA graphics card and the CUDA API, which significantly reduces the com-

putational time of the simulation. The present solver that has been used in a previous work by 

the authors (Anevlavi, Filippas and Belibassakis 2023), 

 enables numerical calculation of the wing body velocities using backward finite differ-

ences with GPU parallelization.

 re-generates the surface mesh at each time-instance to simulate a deforming wing

 re-calculates of the induced coefficients (DtN) matrix at each time-step

 calculates the propulsive performance metrics targeting flapping-foil thrusters

The proposed version of the GPU-BEM is cost-effective and is capable of predicting with ac-

ceptable accuracy the propulsive performance of actively deforming flapping-foil thrusters, 

thus allowing for detailed sensitivity analysis and optimization, which often require many cost 

function evaluations. The GPU-BEM computational tool performs unsteady simulations for 

wings with linearized wake or free wake modelling. A similar investigation based on Navier-

Stokes models would require costly simulations. The benefits of using potential-based solvers 

for the problem of energy-minimizing kinematics of animal flight are also addressed in 

(Stanford and Beran 2010) and (M. Ghommem 2012), where a vortex-lattice method is used to 

evaluate the performance of candidate thrusters with active morphing and to optimize their kin-

ematics.  

Figure 3. Body-fixed and inertial geometry definitions for the actively morphing wing. 
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In the present implementation the total velocity is calculated numerically using the consequent 

configurations of the wing, then 

( ; ) ( ; ) ( ; )deform total rigidt t t V x V x V x  (17) 

3.1 GPU-BEM Validation 

All computations were performed on an AMD Ryzen 9 3900XT workstation equipped with an 

NVDIA GeForce RTX 3080. Leading edge separation and tip vortex rollup modelling is not 

included in the present formulation. The propulsive performance metrics correspond to the av-

erage values during the last flapping cycle based on a three-period simulation.  

3.1.1 Flow past a flapping (i.e. bending) cambered wing 

In the work by (Vest and Katz 1996) were a potential-based computational tool is developed 

for the analysis of bird flight is it mentioned that time-dependent experimental data for actively 

deforming wing are very scarce; which still holds today. They compared their unsteady BEM 

solver with one of the few experiments on actively deforming wings by (Fejtek and Nehera 

1980), where a highly cambered NACA 8313 foil was tested. The experiments are motivated 

from large bird flight at high speeds. The wing had a rectangular planform with a blunt wing 

tip, 76mm chord length and 305mm span, shaped from a solid balsa plank and covered with a 

shrink-tight plastic film. We numerically simulated the whole wing as (Vest and Katz 1996) 

with AR=8, whereas in the experiments only the half-span was tested. 

In Figure 5, we compared our method with results from (Fejtek and Nehera 1980) regarding 

the time histories of the lift and thrust coefficients for a flapping wing in the sense of linear 

bending with 45o amplitude at a frequency of 3.3 Hz and inflow velocity U=21.4m/s at zero 

angle incidence. In Figure 5, numerical data from (Vest and Katz 1996) are also included for a 

reduced frequency k=ω c/(2U)=0.03082, where c denotes the chord length and U the inflow 

velocity. The numerical results obtained from our method are generally in good agreement with 

the potential code from (Vest and Katz 1996) and the experimental data. There is some discrep-

ancy between the inviscid numerical results and the experiment, especially during the down-

stroke which is attributed to viscous phenomena.   

Figure 4.  Variations of the (a) lift and (b) thrust coefficients for a flapping (i.e. bending) wing. Comparison with 

numerical data from (Vest and Katz 1996) and experimental data from (Fejtek and Nehera 1980). 

(a) (b) 
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3.1.2 Flow past a flapping (i.e. bending)/twisting rectangular wing 

Next, we selected from (Neef and Hummel 2002) a study case inspired from bird flight, at U = 

15m/s cruising speed, with reduced frequency of k = 2πfc/(2U) = 0.1 and  f = 3s−1. The plung-

ing-type motion is modelled as the first bending mode with flapping amplitude of 15o, whereas 

the twist motion varies linearly from root to tip. Particularly, the plunging and twisting motions 

using in the aforementioned study case are based on the linear expression G1 as follows,  

10 1 0

0 1, 1 0

( , ) sin(2 ) ( )

( , ) [ sin(2 / 2)] ( )

s b

s o tip

t f A ft G

t f a a ft G

 

  



  

x x

x x

(18) 

The negative value of the twist angle amplitude corresponds to a nose-up twist at the tip. Also, 

the mean angle of attack examined were α0 = 0o (no lift, thrust only) and α0 = −4o (lift and 

thrust). Regarding the spatial and temporal discretization dt = 0.125T/100, NEA = 49 (number 

of panels in the spanwise direction) and NEC = 60 (number of panels in the chordwise direc-

tion); i.e. approximately 1.25 hours per simulation. In the simulations, wake roll-up is included 

however; and the trailing vortex sheet is shed from the trailing edge. 

For the first comparison shown in Figure 6, Ab1 = 0.5s tan(15o) and α1,tip = −4o. Numerical 

results from the vortex lattice solver from (M. Ghommem 2012) that neglects the wing’s thick-

ness are also included for comparison purposes. The thrust is over predicted by the BEM solver 

despite the dense spatial/temporal discretization, which can be attributed, as discussed in 

(Stanford and Beran 2010), to an under prediction in the strength of the tip vortex swirling (i.e. 

an under prediction in the strength of the induced drag).This effect is relatively strong in the 

flow field results provided. Since both models are inviscid, this comparison shows that the pre-

sent BEM method is capable of reproducing trends in terms of thrust coefficient and Froude 

efficiency with acceptable accuracy within its range of validity.  

Figure 5. Plunging/twisting wing comparison with (Neef and Hummel 2002) and (M. Ghommem 2012). 
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3.1.3 Friction drag correction 

Consideration of friction drag effects can be included using the following empirical formula 

that comprises of a skin friction resistance coefficient and a coefficient dependent on the effec-

tive angle of attack from (Filippas and K.A. Belibassakis 2014), 

   2

2

10

0.0858
Re (Re) , Re

[log Re 1.22]
r f a fC C C a C  



(20) 

This friction coefficient increases at higher angles of attack leading to better predictions. In 

(Anevlavi, Filippas and Belibassakis 2023) the comparison between the GPU-BEM and the 

experimental data from (Heathcote, Wang and Gursul 2008) can be found. Other coefficients 

targeting effects such as leading edge separation can also be formulated in future work to bring 

inviscid result closer to the reality, assuming that adequate data from either CFD or experiments 

are provided. The corrections are implemented during the post-processing phase on the instan-

taneous thrust coefficient ( ) ( ) ( )Tvisc r TC t C t C t   and then on the efficiency after averaging for 

the last period of the simulation, i.e. /Tvisc PwtotC C  .  

4 DESIGN OPTIMIZATION APPLICATIONS 

The hydrodynamic optimization of actively deforming wings is based on optimally tuning cer-

tain key geometric and kinematic parameters. The problem formulation is targeted toward the 

maximization of propulsive efficiency under thrust and effective angle of attack requirements 

that are included as constraints.  

Particularly, 

max

max  

    (1 ) (1 )

( )

Treq T Treq

eff

n

subject to p C C p C

a root a

b DS



   





(21) 

where nb  is design variable vector and { | }n

n nDS b R lb b ub     the design space defined as 

an n-dimensional bounding box and. The geometric and kinematic parameters included in the 

present study are shown in Table 2. The phase difference for the twisting motion is determined 

via the optimization. Both constraints are enforced upon the average values during the last flap-

ping-cycle of the numerical simulation. 

In the applications that follow we assume thet designs with thrust requirement within p = 5% 

tolerance are acceptable; whereas for the root section the maximum admissible effective angle 

of attack lie below 12deg. Friction drag corrections given by Eq. (20) are included in the results 

concerning both the thrust and the efficiency; however, the thrust constraint enforced corre-

sponds to the equivalent inviscid result. The Reynolds number for this study is estimated as 

Re=861,600 and the coefficients for the friction drag viscous corrections are taken as 

Cf=0.0039 and Ca=0.13. 

The solution of the optimization problem is based on the gradient-based nonlinear program-

ming “fmincon” solver offered from (MATLAB n.d.). Particularly, we implemented the se-

quential quadratic programming algorithm through the “sqp” option, which is suitable for 

handling nonlinear constraints, whereas the gradient computations for the Hessian matrix where 

based on forward differences. A typical three flapping-cycle simulation with linearized wake 

(including DtN re-calculation) takes 8min (NEA=31, NEC=60, TSR=0.36 (ω=7.17 rad/s, 

dt=0.0032s, T3=0.8730s).  
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4.1 Optimal thruster with active chordwise/spanwise bending 

For the first optimization study (case-1) we introduce 
0 0{ , / , , , , , }n sweep t r c bb A c c h Str A A  

with emphasis on the effects of a superposition of chordwise and spanwise bending on the pro-

pulsive performance of the thruster. The phase differences that contribute to efficiency enhance-

ment for this setup have been determined in previous work by the authors (Anevlavi, Filippas 

and Belibassakis 2023), as ψc=180deg and ψb=0deg respectively. The frequency of motions is 

kept the same. The optimal thruster is shown in Table 2 and the corresponding propulsive per-

formance metrics in Table 3. In Figure 7, we provide schematically consecutive instances of 

the wing’s shape during one period of motion. The optimal wing is swept back with taper ratio 

/t rc c =0.335, it operates at the maximum heaving amplitude, a higher pitching amplitude and 

frequency. Regarding the active deformation, the solution yields the maximum chordwise bend-

ing amplitude and Ab=8.9deg. The optimization study required 10 hours on an AMD Ryzen 9 

3900XT workstation equipped with an NVDIA GeForce RTX 3080.  

Both constraints have been satisfied with a 21% gain in propulsive performance. Essentially, 

active chordwise deformation resembling the behavior of passively deforming hydrofoils under 

hydrodynamic load excitation; see e.g. (D. E. Anevlavi, et al. 2020), leads to a significant in-

crease in the propulsive performance as the hydrofoil section follows the flapping-foil trajectory 

of the motion at a thrust reduction penalty. In addition, since active chordline deformation does 

not alter drastically the effective angle of attack its contribution to the overall propulsive per-

formance is predicted with good accuracy via potential-based solvers. On the other hand, as 

shown in (Neef and Hummel 2002) and (Heathcote, Wang and Gursul 2008) spanwise bending 

contributes significantly to the thrust production and affects significantly the maximum effec-

tive angle of attack. Particularly, from the GPU-BEM we predict that the maximum effective 

angle of attack at the tip of the wing is 22deg. High effective angles of attack are responsible 

for the high propulsive efficiency reported as shown in Table 4. However, large effective angles 

of attack are related to dynamic stall phenomena which can be predicted only via viscous com-

putations. In any case, the margin of propulsive performance enhancement is high and thus the 

proposed optimal thruster design has the potential to outperform the reference design in further 

numerical examination.   

4.2 Optimal thruster with active chordwise bending/twisting 

The next optimization study (case-2) is concerned with investigating the effects of a combina-

tion of active chordwise bending and twisting; for which we introduce the following design 

variable vector 0 0{ , / , , , , , , }n sweep t r c t tb A c c h Str A A  . Investigations regarding the effects twist 

have been addressed in recent works such as (Thielicke and Stamhuis 2018), where it is found 

via experimental computations using that adapting twist is essential to meet the demands of 

varying mission requirements by keeping the effective angle of attack sufficiently low to avoid 

reduction of forces due to viscous phenomena. Motivated by this, we performed the present 

optimization to reveal whether a combination of active chordwise bending and spanwise twist-

ing variation can increase the efficiency at a reduced effective angle of attack at the root and 

tip; while at the same time satisfy the thrust requirement.  

The findings are presented in Table 3 along with the reference design and the thruster from 

case-1 for comparison purposes. Figure 8 contains instances of the optimal thruster during the 

last flapping-cycle. We can observe that the solution fails to satisfy the constrain regarding the 

effective angle of attack at the root, however at the tip the effective angle of attack is lower than 

the thruster obtained from case-1; indicating that a combination of both bending and twisting 
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motions has the potential to produce an optimal thruster with maximum effective angle of attack 

along the span that is sufficiently low. This is left for future work.  

The optimal phase difference for the twist motion is found to be 90deg; thus in phase with 

the pitching motion with an amplitude of 7deg. The rigid-body motion parameters are close to 

the results of case-1. The efficiency enhancement is 20% and the discussion from the previous 

section regarding the effective angle of attack that should be examined with caution is remains 

valid. 

4.3 Comparative analysis 

Finally, we present in Figure 9 the time-histories of lift, thrust and moment coefficients for the 

reference design and the optimal thrusters (case-1, case-2). The new thruster designs produce 

slightly lower average thrust and lift coefficients, as expected. The moment coefficient is cal-

culated with respect to an axis parallel to the y-axis and positioned at c/3 at the root section. 

The large deviations from the time-history of CM of reference design are attributed to the active 

deformation of the wing and the changes in planform. The average values of the moment coef-

ficient are lower compared to the reference design as shown in Table 3. The instantaneous 

power coefficients defined in Sec. 2.3 are also provided for completeness.  

Table 2. Design variables and constraints for the optimization studies. The quantities in brackets are defined 

prior to the optimization and remain fixed for all solutions. 

Geometric Units (SI) Lower 

bound 

Reference Optimal 

Case-1 

Optimal 

Case-2 

Upper 

bound 

Sweep angle 

sweepA

deg 0 0 14.30 27.50 30.00 

Taper ratio 

/t rc c  

- 0.100 1.000 0.335 0.950 1.000 

Flapping 

h0 m 0.250 0.750 0.930 1.000 1.000 

θ0  deg 5.000 23.00 33.10 28.00 40.00 

Str - 0.234 0.260 0.279 0.270 0.286 

Active de-

formation 

Αc m 0 0 0.085c 0.100c 0.100c 

Αb deg 0 0 8.900 - 10.00 

At deg -10.00 0 - 7.000 10.00 

ψt deg 0 0 - 90.00 180.0 

ψc deg - 0 (180.0) (180.0) - 

ψb deg - 0 (0) - - 

Table 3. Propulsive performance of thruster designs. 

id Inviscid Viscous 

Corrected 

Root Tip 

TC η 
PoutC TC η aeff 

(deg) 

aeff 

(deg) 

Sarea 

(m2) 

Diff (%) 

0 0.329 0.721 0.4558 0.302 0.663 16.23 16.23 0.3300 

1 0.312 0.878 0.3538 0.296 0.834 11.98 22.04 0.2759 +21.77 

2 0.314 0.867 0.3615 0.292 0.8087 13.24 19.30 0.3259 +20.24 
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Figure 6. Case-1: Deformed shape instances for a wing with active chordwise and spanwise bending deformation 

during two flapping-cycles. 

 
Figure 7. Case-2 Deformed shape instances for a wing with chordwise bending and spanwise twisting defor-

mation during two flapping-cycles. 
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Figure 8. Time-histories of lift, thrust and moment coefficients for the reference design and the optimal thrusters. 

Figure 9. Instantaneous power coefficients for the reference and optimal thrusters during the last flapping-cycle 

of the simulation. 
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5. CONCLUSIONS

In the present work, we examined the effects of geometric and kinematic parameters in the 

sense of heaving/pitching motions as well as parameters of active time-varying bending and 

twisting deformation on the propulsive performance of flapping-foil thrusters for AUV propul-

sion using a realistic scenario. The two optimization studies are conducted to reveal whether an 

optimal tuning of the examined parameters exists, with a focus on propulsive efficiency maxi-

mization under a thrust and effective angle of attack constraints. Each candidate design is eval-

uated using a new cost-effective GPU-accelerated BEM solver suitable for predicted 

hydrodynamic forces and the propulsive performance of wing performing prescribed but arbi-

trary motions (flapping, chordwise/spanwise bending, twisting etc.). Friction drag corrections 

have used in the post-processing phase for the average thrust coefficient and efficiency.  

Based on the findings of this work, an optimally tuned combination of active deformation in 

the sense of bending and twisting for an optimized planform (sweep angle, taper ratio) yields 

up to 20% performance enhancement, although the instantaneous angles of attack become quite 

increased and it needs further investigation. The optimal thrusters operating at a higher Strouhal 

number and a heaving/pitching amplitude compared to the reference design, to compensate for 

the reduction in thrust due to the increase of propulsive efficiency. Regarding the phase differ-

ence, for the optimal design spanwise bending is in phase with the heaving motion, whereas 

chordwise bending has a phase difference of 180degrees compared to the heaving motion. The 

optimal phase difference for the twisting motion is found to be 90deg; thus in phase with the 

pitching motion. The results indicate that flapping-foil thrusters have the potential to operate as 

highly energy-efficient AUV propulsors, thus extending the operational capabilities of these 

vehicles and providing stealth due to their low frequency operation.  

Future work is directed towards further verification of the developed BEM solver via com-

parisons with the NTUA in-house developed MaPFlow RANS solver (Papadakis 2014) to de-

termine whether effects of flow separation and dynamic stall affect the trends that the GPU-

BEM solver reveals during this study. Finally, effects of free surface and waves are also worth 

investigating for AUVs operating at small to moderate submergence depths based on their mis-

sion. The study of more complex modal shapes for a wing with active deformation is an inter-

esting topic of research that is also left for future work.  
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Abstract. This paper presents activities carried out in the Parallel CFD & Optimization Unit
of NTUA, regarding the formulation, programming and assessment of an adjoint method that
combines the advantages of continuous and discrete adjoint, for use in gradient-based opti-
mization, in problems governed by PDEs. The paper presents, for the first time in the literature,
the concept of the Think-Discrete-Do-Continuous (TDDC) adjoint. The idea is as simple as
that: the hand-differentiated discrete adjoint is used to guide the development of consistent dis-
cretization schemes for the continuous adjoint PDEs. By doing so, the new continuous adjoint
(TDDC adjoint) computes sensitivity derivatives with the same accuracy as discrete adjoint,
without though an excessive memory footprint; in contrast, the TDDC adjoint retains the useful
insight into the adjoint equations, the adjoint boundary conditions and the expression of sen-
sitivity derivatives. The development is made for two widely used classes of CFD codes: (a)
pressure-based solvers for incompressible fluid flows, such as the open-source OpenFOAM©

code and (b) hyperbolic solvers for compressible fluid flows, such as the GPU-enabled flow
solver PUMA developed by the group of authors. Cases related to duct flows or flows around
airfoils and (transonic) wings are used to demonstrate the accuracy with which the TDDC ad-
joint computes the gradient; the implementation of the TDDC adjoint in shape optimization in
the same cases is shown too.
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1 INTRODUCTION

The CFD-based optimization has clear cost benefits compared to the extensive use of ex-
periments, and has already been extended to multi-disciplinary problems in which one of the
disciplines is fluid mechanics. The present work is exclusively related to gradient-based meth-
ods (GBMs) that start from a given set of design variables (i.e. a given design) and improve
it step-by-step by computing and using the gradient (sensitivity derivatives, SDs) of the objec-
tive function J with respect to (w.r.t.) the design variables bn, n = 1, ..., N . Supported by an
efficient method to compute gradients, a GBM becomes fast, though occasionally trapped into
local optima. The cost of GBMs is determined by the cost of computing the gradient. The
adjoint method [1, 2] is the only one with a cost that is independent of the number of design
variables, and is thus the only method that can handle problems with many design variables.

To set-up the adjoint method, J is augmented by the sum of the residuals of the flow (primal)
equations multiplied by the adjoint variables. In continuous adjoint [2, 3], J is augmented using
the flow equations in the form of PDEs, and the resulting adjoint equations are PDEs to be
discretized and numerically solved. Finding appropriate discretization schemes for the adjoint
PDEs is a challenge. On the other hand, in discrete adjoint [4, 5, 6], the discrete expression of
J is augmented by the discretized residuals of the primal equations; its differentiation directly
leads to the adjoint equations in discrete form.

Developers of discrete adjoint are proud of computing gradients that are fully consistent with
the primal (CFD) solver and of making the adjoint solver inherit its convergence characteristics
from the primal one. Strong arguments of those developing continuous adjoint methods are the
ease of implementation, the physical insight into the adjoint terms/equations, the lower compu-
tational cost, and, the low memory footprint of the adjoint code. Research performed in the last
years by the group of authors, under the code name “Think Discrete – Do Continuous” (TDDC)
adjoint, ended up with a continuous adjoint method supported by discretization schemes which
are inspired by discrete adjoint. Practically, the new TDDC adjoint bridges the gap between the
two adjoint approaches, by combining the best of both worlds. This is achieved by developing
discretization schemes for the differential operators (convection, diffusion, gradients, etc) of
the continuous adjoint PDEs, their boundary conditions and the SDs expressions, to replicate
what discrete adjoint does, without its weaknesses though. The TDDC adjoint allows the un-
derstanding of the discretization of the adjoint PDEs, which is not the case in discrete adjoint. It
can easily be programmed by re-using a large part of the flow solver, such as that dealing with
higher-order terms or the communication of fluxes between adjacent subdomains processed by
different processors. Furthermore, the TDDC adjoint will have the memory footprint of contin-
uous adjoint, which is much lower than that of discrete adjoint, [7, 8]. Regarding accuracy and
consistency with the primal solver, an agreement of an adequate number of the first significant
digits between TDDC adjoint and FDs is expected, as with discrete adjoint.

Consistent discretization schemes for the TDDC adjoint are presented using two different
ways of formulating and solving the flow equations: (a) pressure-based methods, as in Open-
FOAM (the continuous adjoint solver of which has been made publicly available by the group
of authors, [9], and this is the first software to be enhanced with the TDDC adjoint, herein)
and (b) a time-marching hyperbolic-type solver for compressible fluid flows, by employing the
TDDC adjoint to the in–house GPU-accelerated code PUMA developed by the group of authors
(the “standard” adjoint of this code can be found in [10]).

A literature survey reveals that works in the special field of our enquiry are seriously re-
stricted. We should though report [11] which presents a mathematically more rigorous ap-
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proach, by deriving by hand the discrete adjoint fluxes and reverse-engineering a discretization
scheme that, when applied to one or more of the continuous adjoint terms, reproduces the for-
mer. This work mainly focused on the proper discretization of the so-called adjoint transpose
convection term and covers the first-order part of the convection term and the orthogonal part
of the diffusion fluxes. In addition, an attempt to build the adjoint to the segregated SIMPLE
algorithm was made, without though focusing on some delicate parts of the discretization pro-
cess, such as the Rhie–Chow interpolation (see below, [12]) or the second-order fluxes of the
convection and diffusion terms.

2 TDDC ADJOINT FOR PRESSURE–BASED SOLVERS

2.1 Primal equations & discretization

To showcase the key idea of the TDDC adjoint, applied to pressure–based CFD solvers
for incompressible flows, a quasi–1D flow problem can be used. If S(x) is the cross–section
distribution along the unit length of the channel, which is controlled by the design variables bn,
the continuity and momentum equations are written in the form

Rp=−d (vS)

dx
=0 (1)

Rv=
d (vSv)

dx
− d

dx

(
νS

dv

dx

)
+ S

dp

dx
+ λ

√
Sv2=0 (2)

where v is the velocity, p the static pressure divided by the fluid’s density, and ν is the kinematic
viscosity of the fluid. The last term in eq. 2 contributes to the total pressure (pt) drop inside the
duct due to the effect of shear forces; λ is a Darcy coefficient.

Let us assume that eqs. 1, 2 are discretized using a vertex–centered, finite volume scheme,
with a collocated arrangement of the flow variables, after having discretized the length of
the channel with Np equidistant nodes, with constant spacing equal to ∆x. Even if the ul-
timate goal of this section is to derive discretization schemes for the adjoint code for multi–
dimensional flows as developed in OpenFOAM (which uses cell–centered finite volumes), the
present (vertex–centered) development is both useful and easy to understand. Practically, it
does not make any difference, since the exact same development can be made on the dual grid.

A second–order upwind discretization scheme, is written (at node i) as

Rp
i =−vi+ 1

2
Si+ 1

2
+vi− 1

2
Si− 1

2
=0 (3)

Rv
i =vi+ 1

2
Si+ 1

2
vUPW
i+ 1

2
−vi− 1

2
Si− 1

2
vUPW
i− 1

2
−νSi+ 1

2

vi+1−vi
∆x

+νSi− 1
2

vi−vi−1

∆x

+Si
pi+1−pi−1

2
+λ
√
Siv

2
i∆x=0 (4)

At midnodes, vUPW
i+ 1

2

=vi+
vi+1−vi−1

4
, ϕi+ 1

2
= ϕi+ϕi+1

2
, where ϕ is any flow or geometric quantity,

and convecting velocities are computed via the so–called Rhie–Chow interpolation, [12], as
follows

vi+ 1
2
=vi+ 1

2
−Di+ 1

2
Si+ 1

2

[
dp

dx
− dp

dx

]
i+ 1

2

(5)

The term into brackets corresponds to the third–derivative of pressure[
dp

dx
− dp

dx

]
i+ 1

2

=
−pi+2 + 3pi+1 − 3pi + pi−1

4∆x
∼=− 1

4∆x

d3p

dx3

∣∣∣
i+ 1

2

∆x3 (6)
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and helps overcoming odd–even decoupling in the pressure field. Hereafter, d3ϕ
dx3

∣∣∣
i+1

2

stands for

the finite difference stencil involving the surrounding nodal values of ϕ, as in eq. 6. Also,
Di=∆x/APi, where APi is the coefficient of vi in the discretized (at node i) eq. 4, [13]. Using
eq. 5, eq. 3 takes the form of a Poisson–type pressure equation, the solution of which con-
tributes to a divergence–free velocity field. For the sake of simplicity, during the development
of the (discrete and) TDDC adjoint as presented in this section, it is assumed that Di does not
depend on the flow variables; of course, this is not the case of the software (in OpenFOAM; for
multi–dimensional flows) used in the Results section. To keep the presentation short, we refrain
from presenting the discretization of boundary conditions, and focus on consistent discretization
schemes for the continuous adjoint equations, for internal nodes only.

2.2 Continuous and discrete adjoint

The derivation of the continuous adjoint method for an objective function J=
´
jdx (written

in the form of a field integral along the duct length) starts by the definition of the Lagrangian
Jaug = J +

´
uRvdx +

´
qRpdx, where u is the adjoint velocity and q the adjoint pressure.

Using integration by parts, and since d
dx

and δ
δbn

permute, the derivatives of Jaug w.r.t. bn take
the form

δJaug

δbn
=

ˆ
Ru δv

δbn
dx+

ˆ
Rq δp

δbn
dx+

[
BCu δv

δbn

]x=1

x=0

+

[
BCq δp

δbn

]x=1

x=0

+

ˆ (
v
dq

dx
− v2

du

dx
+ u

dp

dx
+ ν

dv

dx

du

dx
+ λ

v2

2
√
S
u+

∂j

∂S

)
δS

δbn
dx (7)

To avoid computing δv
δbn

and δp
δbn

, their field multipliers in eq. 7 are set to zero, giving rise to the
field adjoint equations

Rq= −d (uS)

dx
+

∂j

∂p
=0 (8)

Ru= −2vS
du

dx
+S

dq

dx
− d

dx

(
νS

du

dx

)
+ 2λ

√
Svu+

∂j

∂v
=0 (9)

Setting the multipliers of δv
δbn

and δp
δbn

to zero (if not otherwise eliminated) at the boundary
nodes gives rise to the adjoint boundary conditions; this is related with the terms denoted by
BCu and BCq. Adjoint boundary conditions will be omitted here, as we did for the primal
boundary conditions too. After satisfying the field adjoint equations and their boundary condi-
tions, the last integral in eq. 7 stands for the SDs expression.

To derive the discrete adjoint to the same problem, J is now augmented by the sum of
the discretized residuals (eqs. 3, 4) multiplied by their adjoint variables, giving rise to the
Lagrangian Jaug = J+uiR

v
i + qiR

p
i , where J is in discrete form and repeated indices imply

summation over all nodes. Its differentiation w.r.t. bn yields

δJaug
δbn

=

(
uj

∂Rv
j

∂vi
+qj

∂Rp
j

∂vi
+
∂J

∂vi

)
︸ ︷︷ ︸

Ru
i

δvi
δbn

+

(
uj

∂Rv
j

∂pi
+qj

∂Rp
j

∂pi
+
∂J

∂pi

)
︸ ︷︷ ︸

Rq
i

δpi
δbn

+

(
uj

∂Rv
j

∂Si

+qj
∂Rp

j

∂Si

+
∂J

∂Si

)
︸ ︷︷ ︸

SD

δSi

δbn

(10)
where Ru

i =0, Rq
i =0 are the discrete adjoint momentum and continuity equations at node i and

the last term on the r.h.s. is the expression for the SDs.
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A hand–differentiation of eqs. 3, 4 w.r.t. vi and pi leads to the following terms in the discrete
adjoint continuity and momentum equations (written for node i)

Rq
i =

1
2
(ui−1Si−1 − ui+1Si+1) +

∆x3

4

dΦ3

dx3

∣∣∣
i
+
∂J

∂pi
=0 (11)

Ru
i =

1
8
Si− 1

2
(vi−2ui − vi−2ui−1 + 5vi−1ui−1 − 5vi−1ui + 2viui−1 − 2viui)

+1
8
Si+ 1

2
(vi−1ui+1 − vi−1ui + viui − viui+1 + 5vi+1ui − 5vi+1ui+1)

+1
8
Si+ 3

2
(vi+1ui+2 − vi+1ui+1 + vi+2ui+2 − vi+2ui+1)

−ξi− 1
2
−4ξi+ 1

2
+ξi+ 3

2
−νSi+ 1

2

1
∆x

(ui+1−ui)+νSi− 1
2

1
∆x

(ui−ui−1)

+1
2
Si+ 1

2
(qi+1 + qi)− 1

2
Si− 1

2
(qi + qi−1)+2λ

√
Siviui∆x+

∂J

∂vi
=0 (12)

where Φ, ξ are defined only at midnodes as Φi+ 1
2
= Si+ 1

2
Di+ 1

2

(
vUPW
i+ 1

2

ui+1−ui

∆x
− qi+1−qi

∆x

)
and

ξi+ 1
2
= 1

16
∆x3S

2

i+ 1
2
Di+ 1

2

d3p
dx3

∣∣∣
i+ 1

2

ui+1−ui

∆x
. The term ∆x3

4
d3Φ
dx3

∣∣∣
i
in eq. 11 is a shifted finite difference

stencil which, compared to eq. 6, is now defined at nodes and is computed using the Φ values at
the four surrounding midnodes. Eq. 11 gets contributions from both the primal continuity and
momentum equations; it is expressed as a difference of the product of adjacent u and S nodal
values without involving values at midnodes (compared to eq. 3). Finally, the discrete adjoint
SDs are

δJ

δbn
=

(
− 1

2
vi+ 1

2
vUPW
i+ 1

2
(ui+1 − ui)− 1

2
vi− 1

2
vUPW
i− 1

2
(ui − ui−1)

+ ν
2∆x

[(vi+1−vi) (ui+1−ui)+(vi−vi−1) (ui−ui−1)]+
1
2
ui (pi+1−pi−1)

+1
2
vi+ 1

2
(qi+1−qi)+

1
2
vi− 1

2
(qi−qi−1)+

λ

2
√
Si

v2i ui∆x+
∂J

∂Si

)
δSi

δbn
(13)

where midnodal primal velocities vi+ 1
2

are given by eq. 5.

2.3 The TDDC adjoint

Having the expressions for the discrete and continuous adjoint equations available, the TDDC
adjoint introduces discretization schemes which, when used to discretize the continuous adjoint
equations, lead to the exact same SDs as discrete adjoint. Let us indicatively focus on the
convection term −2vS du

dx

∣∣∣
i

of eq. 9. Its discretization (integrated over the corresponding finite
volume) should be given by the formula

−2

ˆ x
i+1

2

x
i− 1

2

vS
du

dx
dx= 1

4

vi+1+vi+2

2
Si+ 3

2
(ui+2−ui+1)− 6

4

vi−1+8vi+3vi+1

12
Si+ 1

2
(ui+1−ui)

−3
4

−vi−2+5vi−1+2vi
6

Si− 1
2
(ui−ui−1)+

∆x3

16

(
−Wi− 1

2
−4Wi+ 1

2
+Wi+ 3

2

)
(14)

where Wi+ 1
2
=S

2

i+ 1
2
Di+ 1

2

d3p
dx3

∣∣∣
i+ 1

2

ui+1−ui

∆x
.

One can easily understand the scheme presented in eq. 14. It consists of three contribu-
tions coming from three consecutive intervals ([i− 1, i], [i, i+ 1], [i+ 1, i+ 2]; rather than just
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[
i− 1

2
, i+ 1

2

]
, as in the primal problem). Within each interval, du

dx
is approximated through cen-

tral differences, and S by averaging nodal values. Thanks to the TDDC adjoint, one may see
the way v is defined at these three intervals, see corresponding terms in eq. 14. This reflects the
effect of the upwind scheme used in the primal equation. The last term in eq. 14 reflects the
way eq. 5 computes midnode velocities in the primal problem.

The idea of the TDDC adjoint covers, also, the discretization of the expression for the SDs
derived in continuous adjoint. Guided by eq. 13, the most important terms in the last integral of
eq. 7 must be discretized as

ˆ x
i+1

2

x
i− 1

2

v
dq

dx
dx= 1

2

(
vi+ 1

2

qi+1 − qi
∆x

+vi− 1
2

qi−qi−1

∆x

)
∆x (15)

−
ˆ x

i+1
2

x
i− 1

2

v2
du

dx
dx=−1

2

(
vi+ 1

2
vUPW
i+ 1

2

ui+1 − ui

∆x
+vi− 1

2
vUPW
i− 1

2

ui − ui−1

∆x

)
(16)

ˆ x
i+1

2

x
i− 1

2

u
dp

dx
dx=ui

pi+1−pi−1

2∆x
∆x (17)

and ˆ x
i+1

2

x
i− 1

2

ν
dv

dx

du

dx
dx=

ν

2

[
vi+1−vi
∆x

ui+1−ui

∆x
+
vi−vi−1

∆x

ui−ui−1

∆x

]
∆x (18)

3 TDDC ADJOINT FOR COMPRESSIBLE HYPERBOLIC SOLVERS

3.1 Primal equations & discretization

To present the TDDC adjoint for the compressible fluid model, the multi-dimensional Euler
equations, are written as

RMF
n =

∂fnk
∂xk

= 0 , n = 1, .., 4(, 5), k = 1, 2(, 3) (19)

and solved by the GPU–accelerated PUMA code of the PCOpt/NTUA.
Here, fnk = [ρvk ρvkvn−1 + pδn−1,k ρvkht] are the inviscid fluxes. Eq. 19 is solved for the

conservative flow variables U=[ρ ρvk ρE]T , where ρ, vk, E, ht and δkm are the fluid’s density,
the velocity components, the total energy per unit mass, the total enthalpy and the Kronecker
symbol, respectively. The primitive flow variables’ array is defined as V= [ρ vk p]T , with p
being the static pressure. A vertex-centered finite volume formulation on unstructured grids is
used; an integration of eq. 19 over a finite volume ΩP defined around an internal or boundary
node P , by applying the Green–Gauss theorem, results to the balance of numerical fluxes Φ

crossing the boundaries of ΩP ,
∑
Q

ΦPQ
n +

∑
ffl Φ

ffl
n = 0, where

∑
Q

denotes summation over all

adjacent nodes Q connected with P by a grid edge, and
∑
ffl summation over all boundary faces

ffl
∈ ΩP , fig. 1. Eq. 19 is numerically integrated in pseudo-time by adding a pseudo-time

derivative ∂Un/∂τ to it.
Fluxes Φn crossing the interface of ΩP and ΩQ are discretized based on the Roe’s upwind

scheme, [14],

ΦPQ
n = 1

2

(
AP

nmkU
P
m + AQ

nmkU
Q
m

)
nPQ
k − 1

2

∣∣∣ÃLR
nmkn

PQ
k

∣∣∣ (UR
m − UL

m

)
(20)
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Figure 1: Finite volumes formed around an internal node P (left) and a boundary node P (right).
Nodes (1, 2, 3, 4) which are connected by a grid edge with P consist the set of Q neighbours,
while nodes (1, 2, 3, 4, 5, 6, 7) which are or are not connected by a grid edge with P consist the
set of N (P ) neighbours. The Q nodes form a subset of N (P ). The magnitude of the normal
vectors (n) on the finite volume boundaries is equal to the area (length) of this boundary (i.e. it
is dimensional normal vector).

where Anmk = ∂fnk

∂Um
stands for the flux Jacobian and Ãnmk for the Jacobian computed using

Roe-averaged quantities. Superscripts L and R indicate the left (towards P ) and right (towards
Q) states of the interface and nPQ

k is the dimensional face normal pointing towards Q. UL
m, U

R
m

are computed based on the primitive V L
m , V R

m quantities, extrapolated using the spatial gradients
computed at P , Q , as follows

V L
m =V P

m + 1
2
tPQ
ℓ

∂Vm

∂xℓ

∣∣∣∣P , V R
m =V Q

m − 1
2
tPQ
ℓ

∂Vm

∂xℓ

∣∣∣∣Q , tPQ=
−→
PQ (21)

∂Vm

∂xℓ

∣∣∣∣P =DP
ℓ V

P
m +

∑
Λ∈N (P )

ZPΛ
ℓ V Λ

m ,
∂Vm

∂xℓ

∣∣∣∣Q=DQ
ℓ V

Q
m +

∑
K∈N (Q)

ZQK
ℓ V K

m (22)

where coefficients Dℓ and Zℓ are based on geometrical data.

3.2 Continuous and discrete adjoint

The development of the continuous adjoint method is herein performed according to the Field
Integral (FI) adjoint method (term introduced in [15], there for incompressible flows though).
The development makes use of the expression δ

δbi

(
∂(·)
∂xk

)
= ∂

∂xk

(
δ(·)
δbi

)
− ∂(·)

∂xℓ

∂
∂xk

(
δxℓ

δbi

)
, [15],

which allows the derivatives of the Lagrangian Jaug to be written as

δJaug

δbi
=

δJ

δbi
+

ˆ

Ω

Ψn
δRn

δbi
dΩ

=
δJ

δbi
+

ˆ

∂Ω

Ψnn̂k
δfnk
δbi

dS

︸ ︷︷ ︸
→ABC

−
ˆ

Ω

Anmk
∂Ψn

∂xk

δUm

δbi
dΩ

︸ ︷︷ ︸
→FAE

−
ˆ

Ω

Ψn
∂fnk
∂xℓ

∂

∂xk

(
δxℓ

δbi

)
dΩ

︸ ︷︷ ︸
→SDs

(23)

where Ψn are the mean flow adjoint variables. The integral marked as FAE gives rise to the
Field Adjoint Equations which read

−Amnk
∂Ψm

∂xk

=0 (24)
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Integrating eq. 24 over ΩP , in the standard finite volume notation, the inviscid term can be
written as a balance of fluxes Φ

−
ˆ

ΩP

Amnk
∂Ψm

∂xk

dΩ ≃ −
∑
Q

Φadj,PQ
n −

∑
ffl Φadj,

ffl
n (25)

where n̂k is the outward unit normal vector. The TDDC adjoint relies on the definition of
consistent discretization schemes for the adjoint flux Φadj,PQ

n , inspired by the discrete adjoint
to the same problem. As in the incompressible case before, we will refrain from focusing on
the Adjoint Boundary Conditions associated with the surface integrals marked as ABC. So, the
next paragraphs are exclusively concerned with the internal nodes.

The development of the discrete adjoint starts by the corresponding Jaug that is now based
on the discretized primal equations which, if differentiated, becomes:

δJaug

δbi
=

δJ

δbi
+
∑
P

ΨP
n

∑
Q

δΦPQ
n

δbi
+
∑
P

ΨP
n

∑
ffl

δΦ
ffl
n

δbi
(26)

Using eq. 20, the second term on the r.h.s. of eq. 26, after swapping nodes P and Q or P and
Λ ∈ N (P ) (wherever the contribution to the adjoint flux for node Q or Λ ∈ N (P ) appears),
takes the form

∑
P

ΨP
n

∑
Q

δΦPQ
n

δbi
=

∑
P

∑
Q

(
ΨP

n −ΨQ
n

) (
T P
nλ+T LR

nλ

) δUP
λ

δbi
+
∑
P

DP
ℓrD

P
r

∂Vℓ

∂Uλ

∣∣∣∣P δUP
λ

δbi
+
∑
P

∑
Λ∈N (P )

DΛ
ℓrZ

ΛP
r

∂Vℓ

∂Uλ

∣∣∣∣P δUP
λ

δbi︸ ︷︷ ︸
FAE

+
1

4

∑
P

∑
Q

(
ΨP

n −ΨQ
n

)∣∣∣ÃLR
nm

∣∣∣ ∂Um

∂Vℓ

∣∣∣∣L−(UR
m−UL

m

) ∂ ∣∣∣ÃLR
nm

∣∣∣
∂V L

ℓ

 ∂V P
ℓ

∂xr

δtPQ
r

δbi
+
∑
P

DP
ℓrV

P
ℓ

δDP
r

δbi︸ ︷︷ ︸
SDs

+
1

2

∑
P

∑
Q

(
ΨP

n −ΨQ
n

)AP
nmkU

P
m+UL

m

∂
∣∣∣ÃLR

nm
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(27)

and
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So, the discrete FAE for ΩP reads

∑
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∑
Q

−1

2

(
ΨP

n +ΨQ
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(28)

Note that, according to eq. 27, the first term on the l.h.s. of eq. 28 could have been written as
1
2

(
ΨP

n −ΨQ
n

)
APQ

nλ ; however, this appears as −1
2

(
ΨP

n +ΨQ
n

)
APQ

nλ +ΨP
nA

P
nλ and the last term can

be neglected as
∑
P

∑
Q

ΨP
nA

P
nλ=

∑
P

ΨP
nA

P
nλk

∑
Q

nPQ
k and

∑
Q

nPQ
k =0 for all internal nodes.

3.3 The TDDC adjoint

Based on eq. 28, the adjoint fluxes appearing in the continuous adjoint equations, eqs. 24 and
25 must be discretized as follows:

Φadj,PQ
n = −1

2
AP

mn

(
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− 1

2
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∣∣∣∣P (29)

Regarding the dissipation term (let M be any node connected with the nodes of N (P ) by an
edge), the adjoint left and right states (denoted as “L, adj” and “R, adj”) associated with the
edge PQ for a quantity ϕ are derived as
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2
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. Downgrading eq. 29 to

first-order accuracy (now
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(30)

Some comments on the similarity (also differences) of the expressions for the primal and
adjoint fluxes, i.e. eqs. 20 and 28, 30, are due. Eq. 30 presents a typical, downwind, non-
conservative scheme, consistent with the upwind Roe’s scheme of the primal discretization; the
only difference is the use of

∣∣∣ÃPQ
mℓ

∣∣∣ instead of the standard absolute Jacobian. Eq. 29 presents
a non-conservative, consistent to the primal, second-order accurate discretization scheme. One
should notice that, now, the L and R states for an adjoint variable are defined differently than
for the primal ones and are denoted by “L, adj” and “R, adj”. Moreover, the use of

∣∣∣ÃLR
mℓ

∣∣∣
as the absolute Jacobian, instead of

∣∣∣ÃLR
mℓ

∣∣∣ is introduced; by doing so, information regarding
the derivatives of the absolute Jacobian w.r.t. the flow variables is added to the discretization
scheme.
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4 TEST CASES FOR THE ASSESSMENT OF THE TDDC ADJOINT

The TDDC adjoint is assessed in four problems: Case I & II using the pressure-based flow
solver OpenFOAM©(programmed following the material presented in section 2.3, after adapting
formulas written there to a cell–centered discretization) and Case III & IV, using the compress-
ible hyperbolic solver PUMA. The four cases are:

Case I-OpenFOAM©: Verification of the TDDC adjoint on a 2D S-bend duct with a laminar
flow at Re=2533. The shape of the duct is parameterized by a 7×5 volumetric NUBRS control
lattice (fig. 3a). The objective function is the volume–averaged total pressure losses. The effect
of grid size to the accuracy of the SDs computed by the TDDC adjoint is investigated on three
progressively refined grids (fig. 2a).

Case II-OpenFOAM©: Shape optimization of an isolated airfoil, operating at an angle of
attack equal to α∞=1.5◦ and Re=33391 (also, a laminar case). Its shape is parameterized by
a 6 × 4 volumetric NURBS control lattice, fig. 3b. The optimization aims at minimizing the
drag coefficient (CD) while retaining the lift coefficient (CL) of the starting (reference) airfoil
(±1‰); though this is, in fact, an equality constraint, it is imposed as a double–sided inequality
constraint. An additional inequality constraint, requiring that the airfoil area should not drop
below 85% of the starting one, is imposed.

Case III-PUMA: Shape optimization of the NACA4415 isolated airfoil for min. CD with the
constraints that CL remains close to its reference value (within ±1‰) and the airfoil volume
does not drop below 85% of the initial one. The flow is inviscid with free-stream Mach number
M∞=0.70 and α∞=2.0◦. Three grids, fig. 2b, are used to investigate the grid density effect on
the computed SDs. The airfoil is controlled by a 10×7 volumetric NURBS lattice, fig. 3c; the
16 control points in red can be displaced in the normal-to-the-chord direction.

Case IV-PUMA: Shape optimization of a transonic isolated wing; the geometry of [16] is
used as the reference wing. The flow conditions are: M∞ = 0.8395, α∞,pitch = 3.06◦ and
α∞,yaw = 0◦. The wing shape and the grid (∼ 73000 nodes) are parameterized using a 8×
7×5 volumetric NURBS control grid, fig. 3d; 18 control points are allowed to move in the
chordwise and the normal-to-the-planform direction, resulting to 36 design variables, in total.
The optimization aims at max. CL, with the constraint that CD should not exceed that of the
reference wing.

4.1 Assessment of the TDDC adjoint for pressure–based solvers (OpenFOAM)

In Case I, SDs of the volume–averaged total pressure drop between the inlet and outlet of
the duct are computed based on the new TDDC adjoint method on three progressively finer
grids (see fig. 2a), and are compared against Finite–Differences (FDs), which is considered as
the method computing reference sensitivities, and those computed using OpenFOAM©with the
“standard” discretization schemes for the adjoint equations. The latter, to be refered to as Stan-
dard Continuous Adjoint (Standard CA), involves a second-order downwind discretization of
the convection terms in the adjoint PDEs, second-order discretization schemes for Laplacian op-
erators using Gauss’ theorem and the computation of spatial gradients based on Gauss’ theorem
and linear interpolations to compute the adjoint quantities at grid faces. In this work, Standard
CA stands for the publicly available continuous adjoint solver of OpenFOAM©(programmed by
the group of authors), [17]. The latter agrees well with FDs only if an adequately fine grid is
used. The TDDC adjoint computes SDs which are in perfect agreement with FDs irrespective
of the grid size (an accuracy of 6 up to 9 significant digits is obtained, even on the coarsest grid);
this verifies that the proposed TDDC adjoint achieves its goal.
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(a) Case I (b) Case III

Figure 2: Progressively refined grids used to assess the accuracy of the computed SDs for
Cases I, III. For Case I, they consist of 200 (top), 800 (center), and 2000 (bottom) cells. The
first (coarsest) one is quite inappropriate for a laminar flow prediction. For Case III, grids of
∼1500 (top), ∼6500 (center), and ∼27000 (bottom) nodes are used.

In Case II, the pressure–based TDDC adjoint solver, verified in the previous case, is used
to optimize the shape of an isolated airfoil. The SDs of CD and CL for the reference airfoil,
as computed by the TDDC adjoint, are compared against FDs, fig. 5. An accuracy of enough
significant digits is obtained, respectively, verifying the accuracy of the proposed discretization
schemes. The optimization is performed using the sequential quadratic programming (SQP)
method using interior point methods to solve the QP problem, [18]. The convergence of the
objective function during the optimization is shown in fig. 6; a reduction in CD by ∼ 5% is
obtained, while the CL coefficient remains within the imposed bounds throughout the optimiza-
tion. The area in the optimized airfoil is reduced by ∼ 5.1% compared to the reference one,
so the corresponding constraint is also met. The reference and optimized airfoils, as well as
the distributions of the static pressure coefficient as a function of the chord’s percentage, are
presented in fig. 7.

4.2 Assessment of the TDDC adjoint for compressible hyperbolic solvers (PUMA)

In Case III, the shape optimization of the NACA4415 isolated airfoil is carried out using the
compressible fluid flow solver PUMA for min. CD with the constraint that CL remains close
to the reference value (within ±1‰). The SDs of CD and CL computed based on the Standard
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(a) Case I (b) Case II

(c) Case III (d) Case IV

Figure 3: Parameterization of shapes and grids. Control points in blue are fixed while red ones
are allowed to move.
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Figure 4: Case I: SDs of total pressure losses computed at the three grids shown in fig 2a (in the
same order from left to right) by FDs (black), the Standard CA method (blue) and the TDDC
adjoint (red) to the pressure–based flow solver of OpenFOAM.

CA (can be found in [10]) and the TDDC adjoint are compared with FDs in fig. 8 for the three
different grids, coarse to fine (left to right). The SDs based on the TDDC adjoint have, at least, a
six-decimal digit accuracy, regardless the grid quality; this verifies the accuracy of the proposed
discretization schemes. On the other hand, small discrepancies exist when the Standard CA is
used; these are more intense for the CD value and, as expected, decrease as grid becomes finer.

The convergence history of the optimization is presented in fig. 9 for the medium-sized grid;
an ∼ 80% reduction is achieved, maintaining the CL value close to the reference one. The
volume of the optimized airfoil is reduced by 12.3%. The Mach number fields around the
reference and optimized airfoils are presented in fig. 10; the shock strength is reduced and so
does CD.

In Case IV, the same solver is used for the shape optimization of a transonic isolated wing for
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max. CL, with the constraint that CD is less or equal to that of the reference wing. Comparison
of the SDs for CD and CL computed based on the TDDC adjoint and FDs, as well as the
optimization convergence history are presented in fig. 11. An increase by ∼ 20% in CL is
obtained for the optimized wing with the drag being close to that of the reference wing. The
Mach number fields for the reference and optimized wings are presented in fig. 12.

5 CONCLUSIONS

A new continuous adjoint scheme (to be referred to as the Think-Discrete-Do-Continuous or
TDDC adjoint) for use in gradient-based optimization was presented for two solvers: a pressure-
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Figure 8: Case III: SDs of CD (top) and CL (right) computed at the three grids shown in fig. 2b
using FDs (black), Standard CA (blue) and TDDC adjoint (red).
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Figure 9: Case III: Evolution of the optimization and constraint functions.

Figure 10: Case III: Mach number iso-areas for the reference (left) and optimized airfoils
(right).

based one for incompressible flows (OpenFOAM©) and a time-marching hyperbolic-type solver
for compressible flows (the in-house PUMA code). Both are based on the finite-volume method:
the former is cell-centered, the latter is vertex-centered. The development of the TDDC adjoint
starts by the development of the discrete adjoint (hand-differentiated) and, then, builds dis-
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Figure 11: Case IV: SDs of CD (left), CL (center) computed using FDs (black) and the TDDC
adjoint (red). Optimization convergence history (right).

Figure 12: Case IV: Mach number iso-areas for the reference (left) and the optimized wing
(right). Spanwise cuts at 50% of the wing span.

cretization schemes for the adjoint PDEs which reproduce the former. This ensures high accu-
racy in the computed gradient (as in discrete adjoint) with a “clear” code and minimal memory
footprint of the adjoint code (as in continuous adjoint). A key advantage of the TDDC ad-
joint is that the developer of the method understands the physical meaning of the discretization
schemes.
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Abstract 

This paper presents the results of microgranulation process of polypropylene to which 1 wt % 

talc was introduced as a nucleating agent. The additive to increase the thermal reflectance was 

titanium white. The additives improving the ignition resistance were two halogen-free flame 

retardants: N-alkoxy hindered amine (a triazine derivative) and zinc borate. Whereas, the ad-

ditives improving mechanical strength were nanofiller in the form of modified MMT  

montmorillonite and wood flour. An existing single-screw extruder with the symbol W25 was 

used for the study. A cross-flow microgranulation head with an interchangeable fillet with 18 

dies and a diameter of 1 mm was designed and manufactured, together with a special connector, 

and a roller haul-off device with pneumatic top roller pressure and bottom roller drive, coupled 

to an independent rotary cutter with 9 cutting knives. The result was a random polypropylene 

microgranulate containing 1% nucleating agent filled with the prescribed amount of filler in 

the form of titanium white, halogen-free antipyrrophenes: zinc borate and a triazine derivative, 

and montmorillonite. The grain size of the microgranulate was 0.5 to 0.6 mm.  

 

 

Keywords: extrusion, pelletizing, cold granulation, micropellets, polypropylene 
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1    INTRODUCTION 

In recent years, there has been growing interest in the polymer plastics processing market in 

the rapidly developing methods of plastic foaming, for which plastic with smaller than pellet 

sizes is increasingly used. For this reason, increasing attention has begun to be paid to the  

process of microgranulation of plastics, in which regular particles of 0.4 to 0.8 mm in size are 

formed [1]. This is particularly important in the manufacture of foamed polypropylene (EPP) 

parts for the automotive industry and thin-walled items with complex shapes. However, for this 

industry, foamed parts need to have more favourable mechanical and thermal characteristics, 

as well as increased non-flammability [2]. This makes it necessary to develop new material 

formulations that would ensure the efficient production of foamed parts with appropriate  

mechanical and thermal properties and with reduced flammability, while mastering the  

technique of obtaining micropellets, which is more demanding than standard extrusion tech-

niques [3, 4] and is not computer-aided like other methods [5].  

  

2    TEST STAND  

An existing W25 single-screw extruder, located in the laboratory of the Lublin University of 

Technology, was used for the tests, for which a cross-head for microgranulation was designed 

and manufactured (Figure 1) with an interchangeable fillet with a number of openings being 18 

and a diameter of 1 mm, together with a special connector. A cross section through the filier, 

on which the length of the dies, their diameter and its change and other processing requirement 

are marked, is shown in Figure 2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

                                 Figure 1: Front of the extrusion head with 18 dies 

In addition, it was assumed that the stand would be equipped with a granulating device that 

would allow the extruded plastic strands to be extracted and mechanically cut into micropellets. 

For this purpose, a roller haul-off device with pneumatic top roller pressure and bottom roller 
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drive, coupled to an independent rotary cutter with 9 cutting knives was designed and  

manufactured. 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 2: Cross section of the cross fillet of the microgranulation head 

This solution is designed to ensure that the extruded strands are stretched, resulting in a smaller 

diameter and cut to any desired length. 

The following technological parameters of the extrusion process with cold microgranulation 

were established:  

- temperature distribution of the barrel along the length of the plasticizing system and  

extrusion head (set on the extruder): 150 oC, 190 oC, 180 oC and 180 oC,  

- extruder screw speed: 30 rpm,   

- linear speed of belt and roller haul-off: 11.5 m/min,  

- cooling water temperature: 15 oC,   

- rotational speed of the rollers of the haul-off device in the granulator: 18 rpm,   

- rotational speed of the granulator cutting knife: 60 rpm.  

The appearance of the cold extrusion microgranulation technological line used in the study is 

shown in Figure 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 3: Technological line used in the study. 
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2.1    Materials used in the study   

The base material used in the study was a random polypropylene to which 1% by weight of 

talc was introduced as a nucleating agent. The additive to increase the thermal reflectance was 

titanium white. Additives to improve ignition resistance were two halogen-free flame retardants: 

an N-alkoxy hindered amine (a triazine derivative) and zinc borate. On the other hand, additives 

improving mechanical strength were nanofiller in the form of MMT-modified montmorillonite 

and wood flour.   

2.1.1 Polymer 

Polypropylene is a random copolymer produced by Ineos with a medium ethylene content 

and no special additives. Its basic properties are shown in Table 1. 

Property Test method Value 

Mass flow rate, (230oC; 2,16kg) ISO1133 7 

Modulus of elasticity, MPa ISO178 900 

Tensile strength at yield point, MPa ISO527-1, 2 27 

Melting point oC ASTM D3418 143,5 

Table 1: Basic properties of PP. 

2.1.2 Absorber IR 

The manufacturer of the titanium white used in the study is Venator (USA), which has  

a representative office in Poland and produces titanium white with the trade name Altiris 550 

and a grain size of 0.70 m. 

2.1.3 Antipyrrophenes  

   The manufacturer of the flame retardant in the form of a concentrate based on PP and  

a triazine derivative (N-alkoxy hindered amine - NOR) used in the study is MK Kolibri Sp.  

z o.o., whose offered concentrate has a 20% NOR content in PP and comes in the convenient 

form of pellets. The agent, with trade symbol MK-120041, is designed to reduce the  

flammability of fibers and thin-walled products and is effective at concentrations ranging from 

2.5% to 7.5%.  The hydrated zinc borate used in the study was produced by Przedsiębiorstwo 

Przemysłowo-Handlowe "Standard" Sp. z o.o. of Lublin, whose product, with a grain size of 2 

to 5 mm, was used to prepare a concentrate in the form of a pellet containing 50% by weight of 

PP and 50% by weight of hydrated zinc borate. 

2.1.4 Reinforcing additives  

For the purpose of the study, a composition containing 10% by weight of montmorillonite 

(MMT) and containing 30% by weight of wood flour was prepared based on a random  

polypropylene-ethylene copolymer.  

2.2   Test metodology 

All compositions for the study were obtained using a standard co-rotating twin-screw  

extruder and granulation head to obtain standard-size pellets, which, after being mixed with an 

appropriate amount of primary PP, were placed in the hopper of a W-25 extruder with a special 

microgranulation head, which is part of the cold microgranulation extrusion technological line 

shown in Figure 1. 
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3     RESULTS 

As a result of selecting the correct operating parameters of the individual components of the 

cold extrusion microgranulation technological line, i.e. the extruder, cooling bath, haul-off and 

granulator indicated in Section 2, micropellets with dimensions ranging from 0.5 to 0.6 mm 

were obtained. The obtained micropellets based on the indicated PP, IR absorber, flame  

retardants, montmorillonite and wood flour are shown in Figure 4. 
 

a)                                           b)                                            c)                                   
 

                        

 

 

 

 

 

 

 

 

                          d)                                           e) 

 

 

 

 

 

 

 

 

Figure 4: Micropellets with the addition of (a) titanium white, (b) MK-120041 flame retardant, (c) zinc borate, 

(d) montmorillonite, and (e) wood flour. 

Thus, the work involved the formulation of material mixtures, which are shown in Table 2. 

Table 2: Summary of recipes received. 

Additive to increase the reflectivity of the surface 

Recipe 1 Recipe 1 Recipe 1 

titanium white: 2% mas. titanium white: 2% mas. titanium white: 2% mas. 

Antipyrine: an additive to improve ignition resistance 

Recipe 4 Recipe 4 Recipe 4 

Triazine derivative: 0,5% 

mas. 

Triazine derivative: 0,5% 

mas. 

Triazine derivative: 0,5% 

mas. 

Recipe 7 Recipe 8 Recipe 9 

zinc borate: 2,5% mas. zinc borate: 5,0% mas. zinc borate: 7,5% mas. 

Additive to improve mechanical properties 

Recipe 10 Recipe 11 Recipe 12 

wood flour 30% mas. montmorillonite: 5% mas. montmorillonite: 10% mas. 
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4     CONCLUSION 

As a result of the work carried out, random polypropylene micropellets containing 1%  

nucleating agent filled with the prescribed amount of filler in the form of titanium white,  

halogen-free flame retardants zinc borate and a triazine derivative, and montmorillonite were 

obtained. In the group of recipes containing an additive to improve mechanical properties, two 

types of micropellets were obtained, with grain sizes ranging from 0.5 to 0.6 mm, containing 

1% by weight of talc and 5% by weight of lamellar nanofiller (montmorillonite) and 1% by 

weight of talc and 10% by weight of lamellar nanofiller, respectively. In the group of recipes 

with an additive to increase thermal reflectance, three types of micropellets were obtained with 

1% wt. talc and 2% wt. titanium white, 1% wt. talc and 4% wt. titanium white, and 1% wt. talc 

and 6% wt. titanium white, respectively. On the other hand, in the group of recipes for  

improving ignition resistance, 6 types of micropellets with halogen-free flame retardant were 

obtained: N-alkoxy hindered amine (triazine derivative) 1% talc and 0.5% antipyrrole, 1% talc 

and 1.0% antipyrrole, and 1% talc 1.5% antipyrrole, respectively, and with zinc borate 1% talc 

and 2.5% antipyrrole, 1% talc and 5.0% antipyrrole, and 1% talc and 7.5% antipyrrole,  

respectively.  

In the case of the filler in the form of wood flour, after repeated trials with different  

combinations of strand extrusion process parameters, micropellets with this filler based on  

polypropylene were abandoned due to the clogging of the micro-dies in the extrusion head. 
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Abstract. In a proton exchange membrane fuel cell (PEMFC), the catalyst layer (CL) and the
gas diffusion layer (GDL) are made of porous materials, the characteristics of which affect its
performance. The CL determines the ion exchange across the membrane that allows the fuel
cell reaction to occur. The GDL transfers the reactant towards the CL and electrons through
the solid part, and is important for water management and heat removal. Innovative designs
of the porosity distribution in the GDL and CL on both the anode and cathode side, is one of
the active research topics in PEMFCs. The optimization presented in this paper redesigns the
porosity distribution in the GDL and CL in order to increase the current density and reduce hy-
drogen consumption. To simulate the PEMFCs, a solver is built in the OpenFOAM environment.
This solver performs steady simulations, based on models available in the literature. Results
from this analysis tool are verified vs. other numerical results, by comparing the polarization,
i.e. the current vs. voltage curve. Here, the evolutionary algorithm-based optimization software
EASY of NTUA, which makes use of on-line trained surrogate models to reduce the number of
evaluations is used to obtain a front of non-dominated solutions. A bilinear porosity distribu-
tion (2D distribution) is used for the GDL along with a uniform distribution for the CL on both
the anode and cathode side. It is shown that some of the optimized PEMFC perform better than
the baseline one in terms of both performance metrics, with consistent changes along the entire
polarization curve.
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1 INTRODUCTION

A fuel cell is an electrochemical device that converts the chemical energy of a fuel (such as
Hydrogen, H2) into electricity through a reaction between the fuel and an oxidant. Fuel cells
constitute a clean and efficient source of energy as they produce electricity with only water and
heat as by-products, unlike traditional power generation methods that release harmful pollutants
and greenhouse gases. Proton exchange membrane fuel cell (PEMFC) is a specific variant that
uses a polymer electrolyte membrane as the electrolyte. In a PEMFC, H2 is fed to the anode
and Oxygen (O2) to the cathode, where they undergo an electrochemical reaction to produce
electricity, water, and heat [1]. These fuel cells are of interest in a wide range of applications
due to their low emissions, high power density and relatively low working temperature [2].

Numerical simulation and optimization techniques are important for the design of PEMFCs;
however, their simulation is quite challenging due to the many physics involved in it. Numer-
ical modeling of PEMFCs can be traced back to the work of Springer et al. [3]. Early models
were simplistic, based on 1 or 2-D considerations. For example, [4] developed a simplified 2-D,
isothermal, single-phase model to study the effect of conductivity, diffusivity, and compression
on current density at the interface of the gas diffusion layer (GDL) and the catalyst layer (CL).
More sophisticated models are also in use. As mentioned in [5], these mostly differ in the mod-
eling of the water transport in ionomer and two-phase flow, see [6]. The two major types of
two-phase models are the two-fluid [7] and mixture [8] ones. The latter, solves the mass, mo-
mentum, and species transport conservation equations for the two-phase mixture (liquid water
and gas) based on its mass-averaged properties while the former, solves these equations for the
gas mixture together with a separate equation for the liquid water transport. Both models are
able to accurately predict the PEMFC behavior and are widely used in the literature; the present
work makes use of the two-fluid model.

The development of CFD tools for the analysis/simulation of a PEMFC is a continuously
evolving field. Some works have used OpenFOAM for this purpose, most of them with simpli-
fied models [9, 10, 11, 12]. For instance, in [9] and [10], electrochemical reactions and charge
transport equations are not solved; [11] uses a single-phase model and [12] uses an isothermal
flow and solves only the flow related equations. In [13], the challenges of increasing power
density in PEMFCs are explored, revealing that modifying GDLs is essential as gas diffusivity
and thermal conductivity of GDLs have a significant impact on cell performance and durability.

Regarding the optimization of PEMFCs, different methods have been used in the literature to
control the structural parameters of a PEMFC stack and working conditions in order to optimize
various performance metrics of a PEMFC, such as the current density, power output, energy
efficiency and others. In [14], variance analysis, surrogate models, and NSGA-II are combined
to optimize the power density, system efficiency, and O2 distribution of a PEMFC. One of the
components that play a significant role in a PEMFC performance is GDL, which is a porous
material that not only mechanically supports the membrane electrode assembly (MEA), but
also facilitates the transfer of both heat and electrons to the bipolar plate (BP) being in contact
with the electrochemically active CL. Therefore, finding the optimal porosity distribution in the
GDL is an active research topic [15, 16, 17]. In [15], a gradient-based optimization is used to
optimize the constant porosity of the GDL. In [16], the effect of linear porosity distributions on
liquid water flux is studied. [17] optimizes a linear porosity distribution in GDL and enhances
species transport and current density. The use of a simple (linear or constant) GDL porosity
distribution can be justified by manufacturing limitations, [17].

In this paper, a 3D, two-phase model is developed to perform numerical analysis for PEMFCs
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and, then, the same tool is used for optimization. This solver is developed in the OpenFOAM
environment and results are assessed with respect to (w.r.t.) other published data by comparing
the polarization curve. The PEMFC optimization focuses on the porosity distribution in the
anode and cathode GDL. The porosity distribution is parameterized using a bilinear function on
the x-z plane and kept constant in the y direction, Fig. 1. Here, a two-objective optimization
is performed using the evolutionary algorithm-based optimization software EASY of NTUA,
employing on-line trained personalized surrogate models to reduce the number of evaluations
needed to find the front of non-dominated solutions in the space of two objectives: max. current
density at a specific voltage and min. H2 consumption.

2 MODEL DEVELOPMENT

2.1 Geometry

The structure and dimensions of the PEMFC used herein, Fig. 1, is similar to the one used in
[2], the results of which are used, later on, for comparison. This geometry includes the bipolar
plate (BP), gas flow channel (GFC), GDL, and CL on both the cathode and anode sides as well
as the membrane layer. Due to symmetry, it is enough to consider only the domain of Fig. 1b,
discretized with 34800 hexahedral cells.
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Figure 1: (a) 2D schematic of the PEMFC (not in scale), with dimensions. Dashed black lines
at the top and bottom show symmetry. (b) A view of the computational grid; anode and cathode
GFC inlets are colored in blue.

2.2 Mathematical Model

The 3D PEMFC simulation makes a steady-flow assumption and relies upon the two-fluid
model. The model equations and most of the corresponding assumptions are similar to those
frequently used in publications such as [5, 18]. The main assumptions the model makes are
that the fluid is laminar and gas mixtures behave as ideal gases; GDL and CL are isotropic
and contact resistances between different layers are neglected. Since the model will be used
to support optimization runs, two extra assumptions are made to reduce complexity and, thus,
computational cost. These assumptions are: (a) water is produced in vapor phase in the cathode
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CL, and (b) the fuel cell is working at a constant temperature, thus the energy equation is not
solved. The former has been used in some papers such as [5] and the latter can be justified by
the fact that the expected temperature change in a PEMFC is relatively low and some models
are using physical properties at constant temperature. The governing equations of the model are
briefly given below:

The mass conservation equation, which is solved in the fluid domain (GFC, GDL and CL)
on both the anode and cathode side, reads

∇ ·
(
ρgU⃗g

)
= Sm, Sm =


−Svl , GDLs and GFCs,
SH2 − Svl , anode CL,
SO2 + Swv , cathode CL.

(1)

where Svl is the source due to water evaporation and water vapor condensation, SH2 and SO2

take into account the consumption of H2 in the anode and O2 in the cathode, respectively. Swv

is the source that accounts for water vapor formation.
The momentum conservation equation for the gas mixture, solved in the same fluid domain,

is expressed as

∇ ·

(
ρgU⃗gU⃗g

ε2(1− s)2

)
= −∇pg +∇ ·

(
µg∇(

U⃗g

ε(1− s)
)

)
+ S⃗u, S⃗u = −µgU⃗g

K
(2)

The gas mixture comprises the reactant gases, H2 and water vapor in the anode and, O2, N2,
and water vapor in the cathode. The conservation of chemical species equation, solved in the
same fluid domain, for the mass fraction of each species yi (with i being H2 in the anode, and
O2 and water vapor in the cathode).

∇·
(
ρgU⃗gyi

)
−∇·

(
ρgD

eff
i ∇yi

)
=Si, Si =


SO2=

−jc
4F

MO2 , cathode CL,
SH2=

−ja
2F

MH2 , anode CL,
Swv= −Svl , anode CL,
Swv= −Svl +

jc
2F

MH2O , cathode CL.

(3)

The mass fractions of N2 in the cathode and water vapor in the anode are computed since the
sum of the mass fractions of all species is equal to 1.

The liquid water transport equation is solved in the same fluid domain and reads

∇ · (ρl
Klµg

Kgµl

U⃗g)−∇ · (ρl
−K0s

3

µl

∂pc
∂s

∇s) = Svl (4)

The electronic charge (ϕele) equation solved in the BPs, GDLs and CLs, and the ionic charge
(ϕion) equation solved in the CLs and membrane read

∇ · (σeff
ele ∇ϕele) = Sele (5)

∇ · (σeff
ion ∇ϕion) = Sion, Sele = −Sion =

{
ja , anode CL
−jc , cathode CL

(6)

Note that if the expression of a source term in any of the above equations is omitted in a spe-
cific domain this implies a zero value there. In the above equations, ρg and U⃗g are the density
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and velocity of the gas mixture respectively, pg, ε, s, µ, ϕele and ϕion are the gas mixture pres-
sure, porosity, liquid water saturation (fraction of the void volume occupied by liquid water),
dynamic viscosity, electric and ionic potential, respectively. The rest of the variables with their
mathematical expressions are included in table 1 while operational and physical properties of
the case are listed in table 2. To solve the above equation, either the operating current density
(I) or the PEMFC potential (Ecell) must be set and the other results from the simulation. In this
study, Ecell is set and I is computed by

I =
Ia + Ic

2
,where Ia =

1

AMEA

∫
ΩACL

jadΩ and Ic =
1

AMEA

∫
ΩCCL

jcdΩ (7)

where AMEA, ΩACL and ΩCCL are the electrode active area and the volume of the anode and
cathode CL, respectively. Upon convergence, Ic and Ia get almost identical values.

Parameter, symbol Expression
Molar fraction of species i, xi xi =

yi

Mi
/
∑

j
yj

Mj

Gas mixture density, ρg ρg = pg/RT
∑

j
yj

Mj

Source due to the evaporation/condensation,
Svl, [7]

Svl =

{
γcond ε (1− s)

xwv(xwvpg−psat)
RT MH2O xwvpg > psat

γevap ε s ρl(xwvpg − psat) xwvpg < psat

Saturation pressure, psat[atm]
log10 psat = −2.1794 + 0.02953(T − 273.15)

−9.1837 · 10−5(T − 273.15)2 + 1.4454 · 10−7(T − 273.15)3

Volumetric reaction rate in anode, ja[ A
m3 ], [1] ja = (1− s)jref0,a (

CH2

Cref
H2

)0.5[exp( 2αaF
RT ηact,a)− exp(−2αcF

RT ηact,a)]

Volumetric reaction rate in cathode, jc[ A
m3 ], [1] jc = (1− s)jref0,c (

CO2

Cref
O2

)[−exp( 4αaF
RT ηact,c) + exp(−4αcF

RT ηact,c)]

Anode overpotential, ηact,a ηact,a = ϕele − ϕion

Cathode overpotential, ηact,c ηact,c = ϕele − ϕion

Gas species concentrations, Ci Ci = ρgyi/Mi

Gas phase relative permeability, K[m2] K = Kg = K0(1− s)3

Liquid water relative permeability, Kl[m
2] Kl = K0s

3

Capillary pressure, pc[pa] pc = σcosθ
(

ε
K

) 1
2 J(s)

Leverett function, J(s) J(s) =

{
1.417(1− s)− 2.12(1− s)2 + 1.263(1− s)3 θ < 90

1.417s− 2.12s2 + 1.263s3 θ >= 90

Effective diffusivity of species i, Deff
i [m

2

s ] Deff
i = (1− xi)/

∑
j,j ̸=i

xj

Deff
ij

Effective binary diffusivity of component i on
component j, Deff

ij [m
2

s ], [5]
Deff

ij = Dij(
T

Tref
)1.5(

pref

pg
)ε1.5(1− s)1.5

Effective electronic conductivity, σeff
ele [7] σeff

ele =

{
σBP
ele in BP

(1− ε)1.5σ
GDL/CL
ele in GDLs and CLs

Effective ionic conductivity, σeff
ion [7] σeff

ion =

{
σi = (0.514λ− 0.326) exp[1268( 1

303 − 1
T )] in Membrane

[(1− ε)εNaf
pell ]

1.5σi in CLs
Water activity, aw aw = xwvpg/psat + 2s

Membrane water content, λ λ =


0.043 + 17.81aw − 39.85a2w + 36a3w 0 < aw ≤ 1

14 + 1.4(aw − 1) 1 < aw ≤ 3

16.8 aw > 3

Nernst potential, ENernst, [1] ENernst = 1.23− 0.9× 10−3(T − 298) + RT
2F ln(

pH2

pref
(
pO2

pref
)0.5)

Table 1: Mathematical expressions associated with the proposed model.
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2.3 Boundary Conditions and Numerical Method

At the anode and cathode GFC inlets, the volume flow rate of the inlet gas is fixed which is
computed by Qina/c

= ξa/c
IrefAMEA

na/cFCH2/O2

, where a and c refer to anode and cathode and other vari-
ables are given in table 2. Also, Dirichlet conditions are imposed on the liquid water saturation
and species mass fractions (which can be computed based on the relative humidity of the inlet
gasses) while Neumann conditions are imposed on pressure. At the outlets, pressure is set to the
PEMFC working pressure while zero Neumann conditions are imposed on all other variables.
At y=0 and 2mm (Fig. 1a), symmetry conditions are applied. At the fluid-solid interfaces, a
zero Dirichlet condition is imposed on the velocities and zero Neumann conditions on pressure,
liquid water saturation and species mass fractions. For the boundary conditions of the electric
potential, a zero Dirichlet is set at the cathode BP end-surface. At the anode BP end-surface,
the total cell potential loss is imposed, (ϕele=ENernst−Ecell). On the external boundaries, there
is a zero flux condition for the ionic potential.

Parameter, symbol Value Parameter, symbol Value
Faraday’s constant, F

[
Coulomb

mol

]
96485.34 Universal gas constant, R

[
J

mol K

]
8.314

Condensation rate, γcond
[
s−1
]
, [7] 1 Evaporation rate, γevap

[
1

Pa.s

]
5×10−5

Molar mass of water, MH2O

[
g

mol

]
18.016 Molar mass of H2, MH2

[
g

mol

]
2.016

Molar mass of O2, MO2

[
g

mol

]
32 Molar mass of N2, MN2

[
g

mol

]
28.02

Absolute permeability, K0

[
m2
]

3 ×
10−12

Reference temperature, Tref [K] [5] 333.15

Bulk diffusivity O2 in water vapor,
DO2−H2O

[
m2

s

]
[5]

2.82 ×
10−5

Bulk diffusivity O2 in N2, DO2−N2

[
m2

s

]
[5]

2.2 ×
10−5

Bulk diffusivity water vapor in N2,
DH2O−N2

[
m2

s

]
[5]

2.56 ×
10−5

Bulk diffusivity H2 in water vapor,
DH2−H2O

[
m2

s

]
[5]

9.15 ×
10−5

Reference pressure, pref [atm] [2] 1 Surface tension, σ
[
N
m

]
[5] 0.0625

Electronic conductivity of BP, σBP
ele

[
S
m

]
[2]

8.3×104 Electronic conductivity of GDL, σGDL
ele

[
S
m

]
[2]

5000

Electronic conductivity of CL, σCL
ele

[
S
m

]
[2]

1000 Volume fraction of nafion in CL,εNaf
pell 0.3

Cathode reference exchange current den-
sity, jref0,c

[
A
m3

]
[5]

120 Anode reference exchange current density,
jref0,a

[
A
m3

]
[5]

5× 108

Reference molar concentration for O2,
Cref

O2

[
mol
m3

]
[5]

3.39 Reference molar concentration for H2, Cref
H2[

mol
m3

]
[5]

56.4

Anode transfer coefficient, αa [5] 0.5 Cathode transfer coefficient , αc [5] 0.5

liquid water contact angle, θ [degree] 120 Reference current density Iref
[

A
m2

]
10000

Cathode stoichiometry, ξc [2] 2 Anode stoichiometry, ξa [2] 1.5
CL porosity, εCL [2] 0.475 GDL porosity, εGDL [2] 0.55
nc 4 na 2

Table 2: Data for the baseline case.

The discretization and solution of eqs. 1 to 6 is performed in the open source tool Open-
FOAM, using the finite volume method and the SIMPLE algorithm. All equations are solved
using the PBiCGStab solver. In each iteration, an inner loop is necessary to make the liquid
water equation, eq. 4, converge, due to its high non-linearity. The steps of the solution loop are
outlined in Fig. 2.
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Figure 2: Flow diagram of the solution procedure.

2.4 Code Verification

To verify the software programmed in OpenFOAM, the computed polarization curve is com-
pared with the numerical data of simulation performed by Yuan et. al [2]. As already men-
tioned, the geometry of the case and most of the physical parameters of the simulation model
are the same. Air and H2 with a relative humidity of 100% are fed to the cathode and anode
inlets, respectively. The working temperature and pressure are 343.15K and 1 atm, respectively.
Comparisons are shown in Fig. 3. A good agreement between the two results can be seen, given
that part of the discrepancies is due to the differences 1in the physical models used. Therefore,
the programmed software appears to be ready for running an optimization loop.
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Figure 3: Comparison of the results of the programmed analysis software and numerical data
of [2]. In this case, porosity takes on constant values, namely: εCL=0.475 and εGDL=0.55 at
both the anode and cathode.

3 OPTIMIZATION RESULTS

This section describes the optimization of the porosity distribution aiming at maximum cur-
rent density and minimum H2 consumption at constant voltage (0.6V). The second objective
stands for the difference of the incoming and outgoing H2. This work assumes that unused
hydrogen is recirculated to the inlet using a pump and is combined with fresh fuel. When
the PEMFC works in recirculation mode, extra actions (such as anode purge to take care of

1The main differences are that in [2], a mixture model is used for two-phase flow, the model is nonisothermal
and some source term’s expression, as well as ja and jc formula, are different.
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impurities accumulated within the anode) are necessary and, thus, a smart control mechanism
(responsible for both the operation of the recirculation pump and the purge valve) is necessary.
From a different gas management point of view, such an objective could also be associated with
dead-end PEMFC operation too, with the risk of hydrogen dilution, possible carbon corrosion
and performance reduction. All these important technical add-ons are beyond the scope of this
paper; the interested reader should refer to [19] or other relevant papers. Initially, a parametric
study on the porosity effect is performed. Then, the parameterization for the porosity distri-
bution is defined, followed by the optimization run. The obtained results are discussed and
compared with those of the baseline (constant) porosity distribution.

3.1 Effect of Porosity - A Parametric Study

Before proceeding to the optimization, the effect of the porosity of the anode and cathode
sides on the current density value, at 0.6V, is discussed. To this end, by keeping the porosity
on one side constant and equal to that of the baseline (εCL = 0.475 and εGDL = 0.55), the
other side’s CL and GDL porosities vary in the range [0.1-0.9] with step equal to 0.2. Fig. 4
summarizes the obtained results for both the anode (left) and the cathode (right). In either of
them, the current density is more sensitive to the εCL rather than to the εGDL value; in practice,
the smaller the εCL the better the results, at least for εGDL ≥ 0.3. The same figure also shows
that, for the anode, with a CL porosity value, as the GDL porosity rises, the current density
initially remains constant and then reduces. For the cathode, the current density increases first
and then decreases. This non-monotonic behavior indicates that there is, indeed, room for
optimization.
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Figure 4: Effect of the GDL and CL porosity of the (a) anode and (b) cathode side on current
density at voltage 0.6V.

3.2 Porosity Parameterization and Optimization Algorithm Set-up

During the optimization, εGDL and εCL on both the anode and the cathode sides are allowed
to vary. For the CLs, given their small width, a single design variable is used to define the
(uniform) porosity on each side. For the GDLs, a uniform distribution along the y direction
is assumed while on the x-z plane the porosity follows a bilinear distribution determined by 4
design variables. This results in 5 design variables on each side of the PEMFC or 10 design
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variables in total.
The optimization is carried out by means of a metamodel–assisted evolutionary algorithm

(MAEA) enhanced by the Principal Component Analysis (PCA). This is implemented in the
Evolutionary Algorithms SYstem (EASY) platform, developed by the PCOpt/NTUA. In this
work a (µ, λ)=(10, 18) MAEA (with µ parents and λ offspring) is used. The algorithm starts as
a standard EA evolving till the first 100 individuals have been evaluated on the PEMFC solver;
these are stored in a database and used for building metamodels in all subsequent generations. In
specific, personalized metamodels of local validity are used to pre-evaluate each and every new
offspring and only a few promising ones (here 2 per generation) are re-evaluated on the PEMFC
solver, enriching the database. Cost assignment in the multi-objective problem is carried out by
considering dominance and niching criteria; herein the SPEA-2 technique, [20], was used. The
PCA is additionally activated after the 3rd generation so as to enhance the MAEA. The PCA,
applied to the offspring population, is herein used to control the evolution operators. In specific,
the parent population members are transformed into a new feature space with ordered variances
(as computed by the PCA). Crossover and mutation are applied in the feature space and the
new offspring population is transformed back into the design space. By doing so, the overall
optimization algorithm converges faster, as explained in more detail in [21].

3.3 Results and Discussion

As already mentioned, the objective functions are I and H2 consumption, both defined at
0.6V, to be maximized and minimized, respectively. The baseline case is the one used for
code verification with parameter values given in table 2. During the optimization, the design
variables are allowed to vary in such a way that the porosity at each and every point at the
anode’s or cathode’s GDL remains within the range of [0.1-0.9], while for the CL the range is
[0.3-0.6]. The max. number of evaluations performed by MAEA is set to 300. The front of
non-dominated solutions obtained from the optimization is shown in Fig. 5. At one edge of the
front of non-dominated solutions (solution C), a ∼25% reduction in the H2 consumption value
is observed which comes with a ∼ 13% less current density. At the other edge (solution A),
the current density is increased more than 11% while the H2 consumption is increased by more
than 60%. Of more importance are the solutions such as point B since this outperforms the
baseline configuration with respect to both objectives. Below, solutions A, B and C are further
discussed.

Comparisons of the porosity distributions between the three selected solutions are plotted in
Fig. 6. The lowest porosity of the anode and cathode CL is that of solution A where the CL
porosity went down to the lowest allowed value (εCL =0.3) whereas the baseline solution has
εCL=0.475. This is in line with the previous parametric study, which suggests a lower porosity
in the CL on both the anode and cathode, for higher current density. This also explains the
higher CL porosity for both the anode and cathode sides in solution C. In solution A, in contrast
to solutions B and C, the porosity value in most of the anode GDL area is lower than the initial
value of 0.55. This implies that, for this case, in the anode side conductivity is playing a more
important role, as lower porosity provides better electric conductivity. It can also be seen that
in solutions B and C, the cathode GDL porosity is higher close to the outlet area while, on
the anode side, the highest porosities are at the inlet. The cathode GDL porosity of solution A
changes only in the x direction remaining almost constant in the z direction.

The improved performance of the optimized PEMFCs can also be explained by the contours
of the mass fractions of the reactants H2 in Fig. 7, plotted in the fluid domain (GFC, GDL and
CL) of the anode side. As seen, in design C, the mass fraction of H2 close to the GFC outlet is
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Figure 5: Front of non-dominated solutions obtained from the two-objective optimization run.
Values are normalized w.r.t. those corresponding to the baseline PEMFC (blue square). Designs
A, B, and C (black squares, to be examined further) belong to the front of non-dominated
solutions.

higher than in the other two designs, indicating a lower consumption of reactants in the anode
CL. The lowest mass fraction of H2 can be seen at the outlet of design A with the maximum
H2 consumption. Fig. 8 shows the plots of current density in the cathode CL in the x-z plane at
y=1mm; higher values of current density appear in design A.

Though the optimization was carried out at 0.6V, it is also interesting to study the polarization
curves of the optimized designs; Fig. 9 compares the polarization curves of the baseline and
optimized designs. For designs A and B, an improved polarization performance, compared
to the baseline case, can be seen in the entire voltage region although the objective function
is defined at a single voltage. As expected, this is not the case for design C. Nevertheless, a
consistent behavior in all cases can be seen; in all cases, improving or worsening the current
density at one voltage leads to the same behavior at any voltage.

4 CONCLUSIONS

A two-objective optimization of a PEMFC was performed using the EASY software of
NTUA that makes use of metamodel-assisted evolutionary algorithms. In a first step, a PEMFC
simulation software was programmed in the OpenFOAM environment and is assessed by com-
paring the numerical results with published data in the literature. Then, a parametric study
was performed to overall investigate the effect of porosity on current density which reveals a
non-monotonic behavior, particularly in the GDL, emphasizing the importance of optimization.
In the optimization, the CL porosities on the cathode and anode side were free to change, by
though keeping a uniform distribution, whereas porosity at the GDLs followed a bilinear distri-
bution. The two objectives are the current density and the fuel (H2) consumption, at a certain
voltage. Some designs in the heart of the computed front of non-dominated solutions dominate
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Figure 6: Porosity distribution in the (left) anode and (right) cathode GDL and CL in the three
selected solutions (top) A, (middle) B and (bottom) C. For better visibility, z dimension is
scaled. Horizontal and vertical axes correspond to z and x, respectively.

the baseline solution improving both objectives by approximately 5%. Three designs selected
from the front are analyzed further. It is important that, even if the optimization took place
from a specific voltage, there is a consistent change along the whole polarization curve, in each
design.
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Abstract 

Radical innovations are necessary to achieve the long-term goals of global aviation on green-

house gas reductions. Many innovative technologies are already being investigated. The cor-

rect implementation of these innovative technologies is only possible if accurate prediction of 

their implications can be made. For that purpose, advanced modelling, simulation and opti-

mization methodologies are indispensable. Three different examples of these methodologies 

will be presented in this paper, including some illustrative applications. One example deals 

with the use of advanced 3D finite element method (FEM) modelling for prediction of relevant 

electro-magnetic (EM) phenomena like induction. Such EM simulation supports induction 

welding (IW) processes which can be used in the innovative assembly of thermo-plastic (TP) 

carbon fiber reinforced polymer (CFRP) composite components. A second example looks at 

the optimized 3D placement of electric components in dedicated compartments on hybrid-

electric propulsion aircraft concepts. Fundamental methodologies for computational geome-

try and graph-based routing modelling can be used to efficiently address such problems. A 

third example looks at the design and optimization of advanced flaps on large passenger air-

craft. Different disciplines like structural design, manufacturing- and cost modelling and per-

formance prediction are needed in such optimizations. The relatively complex multi-

disciplinary model that results from this, can be efficiently evaluated, assessed and optimized 

using surrogate-based optimization approaches. The 3 examples illustrate how novel aircraft 

technologies are supported by increasingly digitalized methods, tools and models. 

Keywords: induction welding, TP-CFRP, space allocation, components placement, routing 

optimization, Multidisciplinary Design Optimization. 
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1 INTRODUCTION 

Radical innovations are necessary to achieve the long-term goals of global aviation on 

green-house gas reductions. Many innovative technologies are already being investigated, for 

example technologies related to advanced composite airframe structures developments, more 

electric systems for propulsion and advanced flight controls. These innovative technologies 

are found in different application areas of the aircraft development process. New materials 

and structures technologies, for instance, are aiming for lighter airframe structures with better 

properties for manufacturability and environmental footprint. For example, thermo-plastic (TP) 

carbon fiber reinforced polymer (CFRP) composites are being investigated for their improved 

light-weight potential, their faster production and assembly processes, and their possibilities 

for recycling [1]. New technologies for more electric or hybrid-electric propulsion (HEP) sys-

tems are aiming at direct reduction of fuel consumption of the aircraft power plant [2]. This 

implies the use of much more electric components on board aircraft for the propulsion power 

train and control systems [3]. New technologies for more advanced flight controls are aimed 

at improved primary flight control surfaces for lower weight, lower cost and better perfor-

mance. For example, advanced flaps are designed to take these different aspects into account 

simultaneously [4]. 

The correct application of all these innovative technologies is only possible if accurate 

prediction of their implications can be made. For that purpose, advanced modelling, simula-

tion and optimization methodologies are indispensable. For example, in the assembly of TP 

CFRP composite components, innovative joining methods like induction welding (IW) can be 

used. However, the exact behavior of the material in such electro-magnetic (EM) heating pro-

cesses is very intricate and difficult to predict. The three-dimensional (3D) nature of the phe-

nomena taking place requires a detailed analysis of the process. The use of advanced 3D finite 

element method (FEM) modelling allows for such detailed analysis and helps to predict the 

relevant EM phenomena. For the investigation of increased numbers and higher power elec-

tric components on board aircraft, one of the challenges is the detailed placement of these 

components in dedicated compartments. The optimization of the volumetric space allocation 

of these components is a typical target, taking into account constraints on inter-component 

clearance or on thermal limitations. Another typical target is the optimization of inter-

connectivity of cables between components aiming for minimal length and mass, and account-

ing for certain routing constraints. Fundamental methodologies for computational geometry 

and graph-based routing modelling can be used to efficiently address such problems. For the 

design and optimization of advanced flaps, some representation of the different disciplines of 

structural design, manufacturing- and cost modelling and performance prediction are needed. 

The relatively complex multi-disciplinary model that results from this, may be efficiently 

evaluated, assessed and optimized using surrogate-based optimization approaches. In that way 

the overall flap assessment can be done in very limited time and directions and limitations for 

the flap design can be estimated. 

These example applications represent some cases in which the development of innovative 

technologies for novel aircraft is supported by increasingly digitalized methods, tools and 

technologies. In this paper these example applications will be elaborated on and their potential 

implications on innovative aeronautic technologies will be indicated. The investigations be-

hind these example applications have been executed in the Clean Sky 2 project STUNNING 

and in the Horizon 2020 project AGILE 4.0 [5]. 
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2 ELECTRO-MAGNETIC FEM MODELLING FOR INDUCTION WELDING 

In the assembly of light-weight aircraft structures, TP CFRP composite laminates are in-

creasingly utilized. These TP composites can be locally re-melted, allowing them to be joined 

via welding. An example of an innovative joining technique is welding by local electromag-

netic inductive heating, so-called induction welding. Several heating mechanisms take place 

in the inductive heating of TP CFRP. The extent in which each mechanism contributes to the 

heating process, depends on the composite material that is heated and the electromagnetic in-

duction process parameters that are applied. At present, the inductive heating of woven fabric 

composites is well documented and understood [6]. However, the inductive heating of Uni-

Directional (UD) ply CFRP material is much less understood. According to literature [7] this 

could be due to the absence of current returning paths that are required for the inductive eddy 

currents, which are responsible for the main heating mechanism. 

In this paper we present a 3D electromagnetic simulation model that can predict the 3D en-

ergy source field from local Joule heating due to induced electric currents in the CFRP lami-

nate. This electromagnetic model can be coupled to 3D thermal simulation models that can 

provide insight into the actual heating of TP CFRP laminate. Specific aspects that are ad-

dressed in these simulations include the influence of the UD plies and their orientations on the 

eddy current generation and on the heat generation inside the CFRP laminate that is placed in 

an electromagnetic field that is induced by an electric coil. 

To investigate the exact behavior of the induced electric currents in the CFRP laminate, we 

consider a simplified experimental set-up. In this set-up we use a large, more or less rectangu-

lar water-cooled tubular copper coil with a straight leg just above the laminate, where it gen-

erates a relatively simple and well-defined electromagnetic field. The same simplified 

experimental set-up is defined in a FEM electromagnetic simulation model, which is imple-

mented in the FEM software Simulia-Abaqus [8], see Figure 1. The FEM electromagnetic 

simulation model can have a double planar symmetry in the two vertical center-planes: one 

perpendicular to the coil and one through the center-line of the coil. This symmetry is the case 

if the cross-ply laminate has only 0- and/or 90-degree plies that are oriented parallel and per-

pendicular to the coil center-line. In that case only one quadrant of the domain needs to be 

considered in the simulation model; in all other cases the full domain shall be considered. 

 

    
(a)   (b)   (c)    (d) 

 
Figure 1 Illustration of the simplified experimental set-up and its implementation in a FEM electromag-

netic simulation model. From left to right, it is shown: (a): the more or less rectangular copper coil; (b): 

the straight leg of the coil just above the laminate (black plate); (c): the FEM simulation model of the 

straight leg of the coil (orange) and the laminate (black), which can have a double planar symmetry in the 

two vertical center-planes: one perpendicular to the coil and one through the center-line of the coil; (d) the 

right half of the considered simulation domain, where also the air is indicated in blue. 
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As indicated in the Figure 1, the FEM electromagnetic simulation model contains three dif-

ferent material sections: the copper coil, the composite laminate plies and the surrounding air 

[9]. The composite laminate contains consolidated UD plies of the pre-preg material Toray 

TC1320 PEKK AS4D [10]. For the coil standard copper CU-ETP1 – C11040 is assumed, and 

atmospheric air at sea level is assumed. The electromagnetic properties that must be pre-

scribed for these materials are given in Table 1 [9]. 

Table 1 The electromagnetic properties that must be prescribed for the 3 different material sections in the 

FEM electromagnetic simulation model. For the coil, an electric conductivity of 1.0 S/m is used in the sim-

ulations to simplify the prescribed current density and avoid substantial self-inductance effects in the coil. 

Electric conductivity [S/m] Magnetic permeability [H/m] Dielectric constant (Electrical Permittivity) [F/m] 

Air 1.0 1.26E-6 8.85E-12 

Coil 1.0 (60.0E6) 1.26E-6 8.85E-12 

Ply fiber direction: 33500.0 
cross-fiber direction: 1.0 
thickness direction: 1.0  

1.26E-6 8.85E-12 

With the composite ply properties, the various plies and their thicknesses and orientations 

can be easily defined for any laminate in the FEM electromagnetic simulation model. A solid 

FEM mesh with HEX elements is used, where typically each ply is modelled by one or more 

layers of element in thickness direction. Typical TP CFRP ply thicknesses are in the order of 

0.1mm and typical size of the 3D domain for the FEM electromagnetic simulation is in the 

order of 100mm in each direction. So, the FEM problem size for the fully discretized 3D do-

main can grow quite large if a laminate with many plies is considered. Here we consider a 

domain of approximately 120mm by 120mm in the laminate in-plane directions, and 40mm in 

the laminate out-of-plane direction. The total domain is discretized into 2372656 linear 8 node 

HEX elements of type EMC3D8 [8]. A symmetric [0,90]-cross-ply composite laminate layup 

is considered with ply thickness of 0.138mm and 36 plies with ply angles: [903,03]3s. See Fig-

ure 2. 

(a) 
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 (b)   (c)      (d) 

Figure 2 Illustration of the FEM electromagnetic simulation model. (a): iso-view on the mesh of the con-

sidered 3D domain showing only the coil (orange) and laminate (black, white). (b): Top view in -Z direc-

tion of the considered double symmetric 3D domain showing only the coil (orange) and laminate (grey), in 

which the analyses are done only on the upper-right quadrant. (c): Front view in +Y direction on the ver-

tical cross-section of the domain through the center line of the coil, where in the bottom the 0-degree plies 

are indicated in black and the 90-degree plies are indicated in white. (d): Front view in +Y direction on the 

vertical cross-section of the domain through the center line of the coil, where in the bottom the element 

orientation vectors of the plies in the laminate are shown. 

 

In the FEM electromagnetic simulation, a constant AC current with a frequency of 193kHz 

is prescribed in the coil as a current density of 11.87A/mm2 in length direction of the coil. 

This directly corresponds to the 199.5A and 193kHz AC current that is applied to the coil in 

the experiment. The coil is placed at a distance of 14mm above the laminate, i.e. an air gap of 

14mm exists between the coil and the upper surface of the laminate. The AC current in the 

coil creates an electromagnetic field in and around the coil, and induces eddy currents in the 

composite laminate. The local strength of these eddy currents is mainly determined by the lo-

cal strength and orientations of the electromagnetic field and the local conductivity properties 

and orientations of the plies in the composite laminate. As indicated in Table 1, the ply con-

ductivity is very high in fiber direction and very low perpendicular to the fibers, which is a 

result of the very high conductivity of the carbon fibers and very low conductivity of the TP 

matrix material. Due to these local orientations of the ply conductivities and of the electro-

magnetic field, very specific patterns of induced currents will appear in the plies. In the FEM 

electromagnetic simulation these induced currents are calculated as local electromagnetic cur-

rent density (EMCD) vectors. In the composite laminate these EMCD vectors typically are 

aligned with the local fiber direction because that is where the highest conductivity exists. In 

the considered cross-ply laminate the fiber directions in the upper three 90-degree plies are 

perpendicular to the coil direction, in the three 0-degree plies below the fiber directions are 

aligned with the coil direction. According to Lenz' law the induced currents in the laminate 

are such that they counteract the change of magnetic field from the coil. Consequently, the 

highest induced currents occur in the 0-degree plies right below the coil, which is in global -

X-direction in the domain, Figure 3. 
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(a)    (b)     (c) 
Figure 3 Illustration of the electromagnetic current densities (EMCD) in the laminate: (a): Top view on 

the EMCD vectors in the 0-degree plies nrs. 31-33: high EMCD in -X-direction is obvious below the coil, 

and increased EMCD in +X-direction near the far edge of the laminate in the top of the picture. (b) Front 

view in global +Y-direction on the cross-section of the coil (top) and the upper 6 plies nrs. 31-36 of the 

laminate (bottom), where it is shown that the high EMCD vectors occur only in the 0-degree plies nrs. 31-

33, and EMCD in the 90-degree plies nrs. 34-36 is very low. (c): Top view on the EMCD vectors in the 90-

degree plies 34-36: high EMCD in -Y-direction occurs along the right edge of the laminate. The vector 

plots show the complex-real part of EMCD solution. 

Because in the 0-degree plies the conductivity in global Y-direction is very low, there are 

no high return-currents in these plies, i.e. currents that close a loop in the laminate from which 

a counteracting magnetic field originates. Instead, these high return-currents in +Y- and -Y-

directions occur in the adjacent 90-degree plies where the conductivity in global Y-directions 

is very high, see Figure 4. In consequence, increased return-currents in global +X-direction 

occur again in the 0-degree plies near the edges of the laminate far away from the coil so in 

relatively low electromagnetic field strength. Furthermore, also inter-ply exchange currents 

occur as locally increased current density vector components in thickness direction of the lam-

inate, i.e. in global Z-direction. These inter-ply exchange currents also contribute to the cur-

rent-loop in the laminate from which the counteracting magnetic field originates. 

(a) (b) 
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(c)     (d) 
Figure 4 Illustration of the electromagnetic current densities (EMCD) in the laminate: (a): EMCD result-

ant vectors in the 0-degree and 90-degree plies nrs. 31-33 and 34-36 in the upper-right quadrant of the 

laminate. (b): EMCD Z-component vectors in the 0-degree and 90-degree plies nrs. 31-33 and 34-36 in the 

upper-right quadrant of the laminate. (c) Top view of the EMCD contours in the 0-degree ply nr. 33 in all 

4 quadrants of the laminate. (d): Top view of the EMCD contours in the 90-degree ply nr. 34 in all 4 

quadrants of the laminate. The vector plots show the complex-real part of EMCD solution. The contour 

plots show the complex-magnitude part of EMCD solution. 

The local current densities (EMCD) in the laminate combined with the local conductivity 

translate to the local Joule heating (EMJH), which is the basis for the energetic source term 

for the inductive heating of the laminate. Hence, the EMJH contours in the various plies are 

related to the EMCD contours in the same plies, Figure 5. 
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(a)     (b) 

Figure 5 Illustration of the electromagnetic Joule heating (EMJH) in the laminate: (a): Top view of the 

EMJH contours in the 0-degree ply nr. 33 in all 4 quadrants of the laminate. (d): Top view of the EMJH 

contours in the 90-degree ply nr. 34 in all 4 quadrants of the laminate. 

 

From the electromagnetic simulation the local EMJH results can be translated to the ener-

getic source terms in a 3D thermal simulation of the same domain. In this thermal simulation, 

the thermal properties of the materials and the thermal boundary conditions (e.g., radiation 

and convection) are prescribed. This model is then used for a heating simulation of the induc-

tive heating experiment described above, in which a continuous heating during 37 seconds has 

been applied. The resulting temperatures in the top surface of the laminate then can be com-

pared to the measured temperatures in the experiment. These measurements are made with an 

infrared Optris PI 640 camera, and indicate a heating pattern with maximum temperatures of 

about 176 oC at the left and right edges of the laminate right below the coil. 

 

   
 (a) (simulation)    (b) (experiment) 
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Figure 6 Comparison of the thermal simulation results for the temperature contour with the measured 

temperatures in the experiment in the top surface of the laminate. (a): Simulation prediction of the tem-

perature contour (NT11 in Kelvin; max value is around 100 oC) on the top surface of the laminate. (b): 

Measured temperatures in the experiment on the top surface of the laminate (purple-yellow colors; dark 

purple: min value: 20 oC; bright yellow: max value: 176 oC). 

It is found that the temperature contours qualitatively match reasonably well, Figure 6. Es-

pecially the global predicted temperature distribution on the laminate surface is predicted rea-

sonably accurate. However, the predicted peak temperature values appear to be too low in 

comparison to the experiment. This is probably due to in-accurate settings in the thermal 

properties of the materials and the thermal boundary conditions, which is an on-going investi-

gation. 

3 3D COMPONENT PLACEMENT AND ROUTING OPTIMIZATION 

The introduction of more electric components on aircraft, in particular components of high 

power related to hybrid electric propulsion, requires careful design and installation of these 

electric components into their compartments or electronic- and equipment bays. One of the 

challenges is the detailed placement of these components in their dedicated compartments. 

The optimization of the volumetric space allocation of these components is a typical target, 

taking into account constraints on inter-component clearance or on thermal limitations. An-

other typical target is the optimization of inter-connectivity of cables between components 

aiming for minimal length and mass and accounting for certain routing constraints. Even the 

combination of these two, i.e. the simultaneous optimization of the components’ space alloca-

tion and of the routing of their inter-connecting cables, could be considered, but will not be 

addressed in this paper. For simplicity we will focus here only on the sequential installation 

optimization problem. For illustration we will consider the installation of electric components 

into the electronic- and equipment bay compartment of a CS-23 turboprop aircraft. Some 

background of this installation problem is given in [11][5]. An illustration of the considered 

compartment is given in Figure 7. 

Figure 7 Illustration of the electronic- and equipment bay compartment [11] considered in the compo-

nents space allocation optimization problem [5].  

To deal with the components space allocation optimization problem, simplified geometric 

representations of the components and the compartment are assumed. Each component and 

compartment are assumed as rectangular cuboids, representing the bounding box around (the 

main body of) their geometries. This simplification introduces some over-estimation of the 
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volume occupation of the components, but also some over-estimation of the available volume 

in the compartment. Both estimation errors may partly compensate each other, but obviously 

more accurate representations should be used when more detailed design of the components’ 

installation is considered. The simplified rectangular cuboid representation of the compart-

ment will be referred to as Space Allocation Volume (SAV). The representation of compo-

nents by their bounding box, and the definition of components in the SAV are illustrated in 

Figure 8. 

 

 

 
 

 

 
 

Figure 8 Left: Illustration of the representation of components and compartments (source: grabcad.com) 

by their bounding boxes (indicated in blue). Right: illustration of the definition of components in the com-

partment (Space Allocation Volume: SAV).  

 

For the components space allocation optimization problem formulation, we consider the 

following approach. An arbitrary number of nc components are included as 3D rectangular 

cuboid boxes representing bounding box of any arbitrary component geometry. The box sizes 

are model parameters ci=(ci,1,ci,2,ci,3), 3 reals for each component ci. The boxes’ lower left 

corner locations are optimization variables xi=(xi,1,xi,2,xi,3), 3 reals for each component ci. The 

first box is always fixed in the origin (0,0,0), which is assumed to be in one corner of the SAV. 

This leads to a constrained single-objective optimization problem with (nc-1)*3 real variables. 

The lower bound is 0 for all variables; upper bound is arbitrary and depends on size of the 

SAV, and any potential SAV clearance requirements that are taken into account. The SAV 

clearance would be the minimum distances between any of the components and any of the 6 

faces of the SAV. Of course, this clearance can also be accounted for by re-defining the SAV 

as a slightly reduced bounding box of the considered compartment. Similarly, clearances be-

tween components can also be easily accounted for by using slightly extended bounding box-

es for each component. 

For the space allocation optimization, the considered objective is a non-linear function of 

the box locations (xi, ꓯi), in this case a real scalar function of the maximum norm of the dis-
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tance vectors vi of all components, fobj=f(||vi||∞) where vi=(xi+ci), ꓯi. The main constraints in 

the space allocation optimization problem are the no-collision constraints, which ensure that 

mutual geometric intrusions between any of the components is avoided. These constraints are 

a non-linear function of the box locations (xi, ꓯi), yielding nc*(nc-1)/2 real scalar inequality 

equations. In this space allocation optimization problem formulation, the box orientations (ro-

tations) are not considered to limit the complexity of the optimization problem. Of course, this 

rather generic problem formulation can be extended with more specific additional criteria, for 

instance that certain components may not be placed on top of other components. 

To illustrate the components space allocation optimization problem, we consider a relative-

ly simple test problem of 8 equally sized cubic components with edge length 0.1m. These 

components are initially placed randomly in the cubic SAV, which has edges of 1.0m. See 

Figure 9, Row (1). This 3D component placement optimization problem with no-collision 

constraints, has 21 continuous variables (the 3D locations xi= (xi,1,xi,2,xi,3) of the 7 free boxes) 

and 28 non-linear constraints (nc*(nc-1)/2, where nc=8). This optimization problem is solved 

by various algorithms, like genetic algorithm (GA), pattern search (PS) and sequential quad-

ratic programming (SQP). The solutions from the direct search solvers (GA, PS) did not de-

liver satisfactory solutions, i.e. insufficient minimization of the objective resulting in non-

optimal packing of components around the origin. The gradient search solvers (SQP) did find 

satisfactory solutions, i.e. near-optimal packing of components around the origin and satisfac-

tion of all collision constraints. But the solution required 16 iterations and 374 objective- and 

constraint function calls, which is mainly due to the finite-difference approximations for the 

gradients of objective and constraints. To improve the efficiency of the solution process, ana-

lytical expressions for the gradients of the objective- and constraint functions were derived 

and implemented. Then the solution requires 17 iterations and only 35 objective- and con-

straint function calls. Subsequently, also 0.05m clearance between all boxes was considered in 

the no-collision constraints, and between all boxes and SAV, for which comparable numbers 

of iterations and objective- and constraint function calls were needed. 

We also test the components space allocation optimization on a bit larger problem:  27 

equally sized cubic components with edge length 0.1m, which has 78 continuous variables for 

the components’ 3D locations (the first box is fixed in the origin) and 351 non-linear con-

straints, as shown in Figure 9, Row (2). The optimization problem is solved again by the SQP 

algorithm, first with finite-difference approximations and subsequently with analytical ex-

pressions for the gradients of objective and constraints. With both methods we find satisfacto-

ry solutions, but of course with different computational costs: 19 iterations and 1583 

objective- and constraint function calls for the finite-difference method, and 15 iterations and 

34 objective- and constraint function calls for the analytical method. Again, also 0.05m clear-

ance between all boxes was considered in the no-collision constraints, and between all boxes 

and SAV, for which comparable numbers of iterations and objective- and constraint function 

calls were needed. The results are shown in Figure 9, Row (2). For each of the optimizations, 

computation times are very low, less than 1 second on a standard PC, because the objective- 

and constraint function are based on relatively simple analytical equations. 

269



W.J. Vankan, N. van Hoorn, A.J. de Wit, and R. Maas 

(1)

(2) 

   (a) (b) (c) (d) (e) 

Figure 9 Illustration of the components space allocation optimization test problems for the equally sized 

cubic components (colored) in a cubic SAV (grey). Row (1): 8 boxes. Row (2): 27 boxes. (a): Boxes initially 

placed randomly in the cubic SAV. (b): SQP optimum solution found with finite-difference approxima-

tions for the gradients of objective and constraints. (c): SQP optimum solution found with analytical ex-

pressions for the gradients of the objective and constraints. (d): SQP optimum solution including 0.05m 

clearance between all boxes in the no-collision constraints. (e): SQP optimum solution when including 

0.05m clearance between all boxes and between all boxes and SAV. 

We now return to the above-mentioned installation problem of electric components into the 

electronic- and equipment bay compartment of a CS-23 turboprop aircraft. In another study 

[11],[12] a component installation solution was determined for this problem, where the focus 

was on maintenance aspects (e.g. accessibility of components) and thermal risks (e.g. local 

overheating in the compartment) [13][14]. An optimum solution was found there, however 

without fully satisfying the component non-collision constraints and the constraints for 

placement within the compartment. Therefore, the components space allocation optimization 

approach with analytical gradients for the constraints that is explained above was used to re-

solve these constraint violations. 

This optimization problem considers 18 rectangular cuboid (so non-cubic) components of 

various sizes, and a rectangular cuboid compartment of approximately 0.6m by 0.4m by 1.4m. 

The initial component installation solution for the maintenance and thermal risks aspects, but 

without fully satisfying the component and compartment non-collision constraints, is shown 

in Figure 10, row (1). This installation solution is used as initial estimate for the components 

space allocation optimization procedure. 

In the components space allocation optimization procedure again the SQP algorithm was 

used, with analytical gradients for the constraints and finite difference estimation for the gra-

dient of the objective. In the problem formulation, one small dummy component (1mm cube) 

was added and fixed in the origin (0,0,0) of the compartment. The objective here is based on a 

weighted sum of the displacement vectors of the 18 free components relative to their initial 

locations: this ensures that the components do not move away too far from these initial loca-

tions. The 18 components lead to 54 independent variables and 153 scalar non-collision con-

straints. The optimization required 42 iterations and 2439 objective- and constraint function 

calls. The optimized result is shown in Figure 10, row (2). In addition, also 0.015m clearance 

between all components was considered in the no-collision constraints, and between all com-
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ponents and compartment. This optimization run required 42 iterations and 2399 objective- 

and constraint function calls. See Figure 10, row (3). 

 

(1)  

(2)                                       

(3)                                       

  (a)    (b)    (c) 
Figure 10 Illustration of: row (1): the initial component installation solution for the maintenance and 

thermal risks aspects, but without fully satisfying the component and compartment non-collision con-

straints. Row (2): the optimized component installation solution with fully satisfied component and com-

partment non-collision constraints. Row (3): the optimized component installation solution with fully 

satisfied component and compartment non-collision constraints, and in addition accounting for 0.015m 

clearances between all components and between all components and compartment. Different views for 

each optimum solution are shown: Isometric view (a) and projections in XZ-plane (b) and YZ-plane (c), 

which clearly show all the non-collision constraints violations (row (1)), satisfied constraints (row (2))  and 

clearances (row (3)). 

 

271



W.J. Vankan, N. van Hoorn, A.J. de Wit, and R. Maas 

For the optimized component installation, we also consider the optimization of inter-

connectivity of cables between the components. The drivers for such optimization are for ex-

ample minimal length and mass of cables while taking into account certain routing constraints. 

For this optimization of inter-connectivity, we use the optimized component installation solu-

tion with fully satisfied constraints for component- and compartment non-collision, and with 

the 0.015m clearance between all components and between all components and compartment, 

as shown in Figure 10, row (3). 

For the optimization of inter-connectivity of cables between the components we use NLR’s 

software tool for component installation and routing optimization NEXT [15]. For this pur-

pose, first the compartment SAV must be translated from its geometric definition (cuboid, in 

meters) to a discretized representation (triangulated STL data, in mm) for incorporation in 

NLR’s NEXT tool, Figure 11. 

Figure 11 Illustration of the SAV transfer process: the compartment SAV cuboid in meters (left) is trans-

lated to discretized triangulated STL data in mm for incorporation in NLR’s NEXT tool [15] (right). 

Subsequently, the optimized component installation is converted to a so-called system-

configuration, which is defined in Microsoft Excel and can be imported into the NEXT tool. 

This system-configuration includes the locations, sizes and geometries of all the components, 

and the definitions of connectors on each of these components. The locations, sizes and ge-

ometries of components are directly and straightforward translated from the optimized com-

ponent installation. The connectors represent the locations on the components where 

connections (for example: cables) between the components are connected. There can be any 

number of connectors on a component, at any location, but typically only locations on the 

outer surface of the component are suitable for feasible connections. To illustrate the func-

tionality, some arbitrary example connectors are defined on the components: 1 connector at 

the midpoint of each face of each component. Connections can be defined between any pair of 

these connectors, typically from one connector on a component to another connector on an-

other component, Figure 12. These connections at this point only represent the link between 

the connectors, not the exact 3D path of the cables. Various properties can be assigned to each 

connection, such as cable diameter and specific mass. In this example a diameter of 10mm 

and specific mass of 2g/mm has been used for all connections. 
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Figure 12 Illustration of the optimized component installation that is converted to a so-called system-

configuration and is imported into the NEXT tool [15]. The components are represented by the blue boxes 

on the left; the active box, which is selected in the components panel on the right, is highlighted in red. 

The connections are indicated by the grey dotted lines; the active connection, which is selected in the con-

nection panel on the right, is highlighted in pink. In the editor panel on the right all the definitions of 

components, connections and connectors can be defined and changed. 

The 3D paths of the cables are to be calculated by the NEXT tool from the cable routing 

optimization problem, Figure 13. This routing optimization problem takes into account the 

available space between the components in the SAV and some additional data like cable di-

ameter clearances and possibly other criteria. Moreover, the cable routing optimization is a 

sequential process, so also the space occupied by previously routed cables is taken into ac-

count. This routing optimization procedure in the NEXT tool makes use of advanced graph 

models and is based on a modified Dijkstra’s algorithm [15]. In this relatively simple example, 

the graph models are based on the discretized 3D SAV, which consists of approximately 

400.000 cells of 10mm by 10mm by 10mm. Nevertheless, computation times for the cable 

routing are reasonably short, in the order of 10 seconds on a standard PC per cable for this 

example problem. 
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   (a)    (b)   (c) 

 
Figure 13 Illustration of the solution of the cable routing optimization problem that is calculated with the 

NEXT tool for the optimized component installation. The routed cables are represented by the grey lines. 

The active cable, which is selected in the NEXT connection panel, is highlighted in pink. Different views of 

the cable routing optimization solution are shown: isometric view (a) and projections in XZ-plane (b) and 

YZ-plane (c), which clearly show all the cable paths between the components. 

 

When the optimized routing for all cables has been calculated, the resulting installation so-

lution of the optimized components and routed cables can be further checked and easily modi-

fied in the NEXT tool. For example, different connectors can be simply selected in the tool’s 

Connection editor and the updated cable routings can be directly recalculated. When the re-

sulting installation solution is satisfactory, it can be saved in a so-called installation file, 

which is a dedicated Matlab [16] .mat file containing the full definition of all components and 

the optimized routing for all cables. Moreover, the resulting installation can also be exported 

to CAD format, for example to CATIA [17]. The optimized routing for each cable is first 

converted to IGES representation and then included in a CATpart file. In addition, each of the 

components can also be converted into separate STL files. These CATpart files of the opti-

mized routed cables and STL files of all the components can then be incorporated as a CATIA 

assembly in a CATProduct file, see Figure 14. 
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Figure 14 Illustration of the CATIA assembly in a CATProduct file, which includes the CATpart files of 

the optimized routed cables and STL files of all the components. 

In this way, the optimized installation can be easily transferred from the NEXT tool to 

CATIA, or other dedicated CAD tools, where the more detailed elaboration of the installation 

can be done. 

4 MULTI-DISCIPLINARY OPTIMIZATION OF ADVANCED FLAPS 

The design and optimization of advanced flaps for large aircraft require coordinated anal-

yses from different disciplines like aerodynamics, loads, structures, manufacturing, landing 

performance and cost prediction. These analyses are typically evaluated in complex sequences 

of dedicated software tools for the various disciplinary tasks. These tools may also be operat-

ed at specialized partners in a collaborative supply chain: analysis results are exchanged 

among the different partners who are responsible for the operation of their specific tool in the 

chain. In the AGILE4.0 project [5] such a collaborative analysis chain has been set up for the 

design and optimization of advanced flaps for a generic regional jet aircraft [18]. For the kin-

ematic mechanism of the flap, two different solutions are considered: a so-called dropped 

hinge flap (DHF) and a so-called smart flap (SMF), see Figure 15. 
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Figure 15 Illustration of advanced flaps for a generic regional jet aircraft (left) with two different kine-

matic solutions (right), the dropped hinge flap (DHF) and the smart flap (SMF) [18]. 

The so-called extended design structure matrix (XDSM) representation of this collabora-

tive analysis chain is shown in Figure 16, which illustrates the analyses that are considered 

and the exchanges between them. 

Figure 16 Illustration of the XDSM representation of the collaborative analysis chain for the design and 

optimization of advanced flaps. 

In the execution of this multi-disciplinary analysis chain for advanced flaps there are sev-

eral complexities, for example due to the computation times and un-assured convergence of 

iterative solvers for the various analysis steps, and due to the intricate data exchange between 

the various analysis steps. Because of these complexities, the evaluation of the complete anal-

ysis chain for a single design point can be error prone and therefore difficult to automate. In 

automated and iterative evaluation sequences, such as in finite difference calculations and op-

timization iterations, these automated analysis chain evaluations are therefore hard to deploy. 

Instead, in this study independent analysis chain evaluations are executed to calculate coordi-

nated series of design points in so-called design of experiments (DOE) data sets. 

These DOE data sets are based on the main inputs (independent variables, or design varia-

bles) and the main outputs (dependent variables, or design criteria)  of the multi-disciplinary 

analysis chain. These main inputs and outputs are listed and described in the Table 2. 
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Table 2 The main inputs (design variables) and the main outputs (design criteria) for the DOE data sets of 

the multi-disciplinary analysis chain. 

Design Variable DOE bounds Description 

mechanism DHF-SMF Kinematic mechanism of flap, only 2 options 

chord 0.15 - 0.35 Flap chord as a ratio of the local wing chord 

trans 0.3 - 0.8 Flap translation as ratio of the local wing chord 

pitch 150-1000 Minimal distance in mm between the ribs in the flap 

Design criteria Unit Description 

weight [kg] Mass of flap plus kinematic system (hinges, beams, bearings etc.) 

cost [$] Cost of  flap  plus  kinematic  system 

land [m] Minimum landing distance at Maximum Landing Weight (MLW) 
with flaps extended in landing condition 

The DOE data sets are obtained from sequential deterministic and randomized samplings: 

in different areas of the design domain different DOE approaches (like partial central compo-

site designs, box-behnken designs, latin-hypercube sampling (LHS) designs) were combined 

into an overall DOE data set. The overall data set comprises: 

• 41 points for DHF

• 36 points for SMF

For both flap mechanism types, all the 3 design variables are varied between their lower 

and upper bounds (chord ϵ [0.15,0.35], trans ϵ [0.3,0.8], pitch ϵ [150,1000] mm). The categor-

ical variable ‘mechanism’ is not straightforward to include directly in the optimization. Be-

cause this variable only has 2 possible values (DHF and SMF), it is more efficient to consider 

separate optimization problems for each of the flap mechanism types. Therefore, also separate 

surrogate models are created for the data sets of each of the flap mechanism types. The result-

ing DOE data sets for the DHF and SMF are illustrated in the Figure 17. Because of the com-

plexities in the evaluations of the complete analysis chain, not very many successful runs 

were achieved and the resulting DOE data sets are rather small. 
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Figure 17: Illustration of the resulting DOE data sets for the DHF and SMF. 

In the optimization, the 3 main design criteria are considered: 

• weight: flap mass, mainly driven by structural design

• cost: flap cost, mainly driven by manufacturing

• land: a/c landing distance, mainly driven by flap aero-performance

For each of these 3 main design criteria separate surrogate models are created. Because of 

the rather small DOE data sets, the selection of the most appropriate surrogate model shall be 

made quite carefully. Therefore, various methods are tested and evaluated for these surrogate 

models, among others: 

• Scattered-interpolant (SCI)

• Radial-basis functions (RBF)

• Generalized-regression nets (GRN)

• Feed-forward neural nets (FFN)

• Gaussian-process regression (GPR) (kriging)

For the DHF data set, the GPR surrogate models achieve the best accuracy: the mean and 

max values of the absolute percentage errors of predictions on the DOE data set are as follows: 

• weight: [mean, max]: [7.8%, 19.7%]

• cost: [mean, max]: [5.4%, 17.2%]

• land: [mean, max]: [0.4%, 1.7%]

To assess the accuracy of the surrogate models in the whole design domain, the error val-

ues in the DOE data sets are interpolated in the whole domain. For the DHF, the percentage 

errors estimations on a 4000 point random LHS dataset in the whole design domain are as fol-

lows (see Figure 18): 

• weight: percentage error ϵ [-49%, +45%]

• cost: percentage error ϵ [-14%, +30%]
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• landing: percentage error ϵ [-1%, +8%]

Figure 18: Illustration of the percentage errors estimations on a 4000 point LHS dataset in the whole de-

sign domain for the DHF.  

For the SMF also the GPR surrogate models achieve the best accuracy: the mean and max 

values of the absolute percentage errors of predictions on the DOE data set are as follows: 

• weight: [mean, max]: [7.8%, 19.7%]

• cost: [mean, max]: [5.4%, 17.2%]

• landing: [mean, max]: [0.4%, 1.7%]

For the SMF, the percentage errors estimations on 4000 point LHS dataset in design do-

main are as follows (see Figure 19): 

• weight: percentage error ϵ [-35%, +38%]

• cost: percentage error ϵ [-26%, +21%]

• landing: percentage error ϵ [-1%, +12%]

Figure 19: Illustration of the percentage errors estimations on a 4000pt LHS dataset in the whole design 

domain for the SMF.  

With the selected methods, the surrogate models’ evaluations are very fast. Typically for 

multi-objective optimizations in the order of 1e5 function evaluations are required. With the 

selected methods these 1e5  evaluations can be run in just few seconds on a standard PC. 
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Several optimization evaluations have been performed with the surrogate models for the 

DHF and SMF design criteria. First some Pareto ranking evaluations were done on random 

search data sets in the design domain, in order to determine the regions of interest. 

Subsequently several multi-objective optimizations (MOO) using NSGA2 (non-dominated 

sorting genetic algorithm) search were performed for more detailed, coordinated and better 

targeted search. In these MOO evaluations, the minimum weight and cost are used as objec-

tives, and the landing field length of less than 2500m is used as non-linear constraint function. 

 

First for the DHF, this MOO evaluation (NSGA2 weight-cost Pareto front for land<2500) 

is done in the large design space with lower- and upper bounds: 

• lb = [0.15,0.3,150] 

• ub = [0.35,0.8,1000] 

The population size is 1000 and the number of generations needed for convergence of the 

Pareto front is 125, with a total number of objectives and constraint function evaluations of 

125001. The resulting Pareto front has 350 points, indicated by the green dots in the plots in 

Figure 20. 

 
 
Figure 20: Illustration for the DHF of the Pareto front (green dots) and the original DOE design points 

(black squares) in the 3D weight-cost-landing-objective space (left) and the 3D chord-trans-pitch-design 

space (right).  

 

Similarly, for the SMF an analogous MOO evaluation was performed, yielding a slightly 

different Pareto front. The population size is also 1000 and the number of generations needed 

for convergence of the Pareto front is 132, with a total number of objectives and constraint 
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function evaluations of 132001. The resulting Pareto front has 350 points, indicated by the 

green dots in the plots in Figure 21.  

Figure 21: Illustration for the SMF of the Pareto front (green dots) and the original DOE design points 

(black squares) in the 3D weight-cost-landing-objective space (left) and the 3D chord-trans-pitch-design 

space (right).  

To determine the overall optimum design, we compare the Pareto fronts of the DHF and 

the SMF (Figure 22). 
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Figure 22: Illustration for the Pareto front data points for the DHF (red dots) and for the SMF (blue dots). 

Plots are given for the 3D weight-cost-landing-objective space (left) and the 3D chord-trans-pitch-design 

space (right).  

 

The DHF results clearly dominate the SMF results: the DHF Pareto points have lower val-

ues for both weight and cost than the SMF Pareto points. In design space, the Pareto points 

for both flap mechanism types are close together, all close to the lower bound for the chord 

(0.15) and trans values of about 0.48 and pitch of around 650mm.  

 

This study demonstrates the potential of surrogate based optimization approaches for com-

plex multi-disciplinary collaborative design and analysis processes. In this way, the complexi-

ties in the execution of such multi-disciplinary analysis chains can be de-coupled from the 

automated and iterative evaluation sequences in the optimization calculations. The computa-

tional efficiency of the surrogate models allows for very quick optimization evaluations in-

volving huge numbers of function evaluations. Of course, the limited accuracy of the 

surrogate models requires careful checking of the optimization results by re-evaluation of the 

optimum design points with the multi-disciplinary analysis chain. This latter aspect has not 

been demonstrated in this study, but has been considered in proceeding investigations in the 

AGILE4.0 project [5]. 
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5 CONCLUSIONS 

Advanced modelling, simulation and optimization methodologies are indispensable for 

successful application of innovative technologies and radical innovations in modern aviation. 

Some example applications have been presented where the development of innovative tech-

nologies is supported by increasingly digitalized methods, tools and technologies. In particu-

lar, advanced FEM modelling and EM analysis have been shown for application to induction 

welding of TP-CFRP structures. Also, some fundamental methods and tools for computation-

al geometry and graph based modelling have been demonstrated for application to automated 

placement and routing of electric components in confined compartments on-board hy-

brid/electric aircraft. And some advanced methodologies have been presented for surrogate-

based optimization of complex multi-disciplinary design and analysis processes for advanced 

flaps. These methodologies and their example applications and some of their potential impli-

cations on innovative aeronautic technologies have been indicated. Further work is needed to 

enhance these methodologies and their adoption in standard aeronautic development process-

es. 
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Abstract 

The practical need of solving real-world optimization problems is faced very often of dealing 
with many objectives, but from the beginning, a question arises: Are all the objectives really 
necessary? The answer to this question lies in the complex relations existing between the pa-
rameters of the process, i.e., not only between the objectives and the decision variables (DVs), 
but also between the DVs and DVs and between the objectives and objectives. Simultaneously, 
intense research is made to improve the performance of multi-objective population-based al-
gorithms to deal with many objectives that, often, imply complex algorithms and time-
consuming computations with complex results that experts on the field of the problem might 
not understand and, as a consequence, did not accept and apply in practice. A straightfor-
ward alternative is to infer the complex relations between the process parameters with the 
aim of reducing the number of objectives. The use of Machine Learning (ML) methodologies 
for that can be very useful since it is someway demonstrated in the literature on the subject of 
reducing the number of objectives. In this work, ML is used to reduce the number of objec-
tives and the results are assessed empirically using a real-world application. 
 
 
Keywords: Multi-objective optimization, Machine Learning, Evolutionary Algorithms, Re-

duction of the number of objectives. 
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1 INTRODUCTION 
The multiobjective nature of real-world optimization problems, in which multiple conflict-

ing objectives exist, can be dealt with in two ways, either using scalarization functions or 

population-based algorithms. The limitations on the use of scalarization functions originated 

the investigation of population-based metaheuristics based on the concept of Pareto-

dominance and niching to progress a population of solutions in the direction of the Pareto-

optimal front [1,2]. 

Generally, three types of population-based algorithms are used to solve Multiobjective Op-

timization Problems MOPs, explicitly, evolutionary algorithms, swarm-based methods, and 

colony-based algorithms, which to evolve the population of solution in the direction of the 

Pareto front apply the dominance concept, the metric indicators, or the decomposition strategy 

[3]. In these types of algorithms, a random initial population of solutions (or a single solution) 

is generated and the operators of selection and variation are applied to obtain successively 

new populations until a stop criterion is met. In this way, the following populations progress 

towards, or to a good approximation of, the Pareto-optimal frontier.  

It is clear from the literature that these algorithms only work well when the number of ob-

jectives is low, but when the number of objectives grows the percentage of non-dominated 

solutions decreases. In this way, it is very difficult that the algorithms based on Pareto-

dominance to work effectively, a problem known as the curse of dimensionality. The number 

of objectives for which this problem occurs is not clear, in some cases, the authors indicate 

that this number is ten [4] and in others is four [5]. In practice, these problems appear when 

the number of objectives is four or more. 

In literature, two different methods are reported to deal with this problem, namely, through 

the application of relaxed forms of Pareto optimality or by reducing the number of objectives 

[5]. The latter is very useful not only during the search process but also for the decision-

making process during and/or at the end of the optimization. 

Another important issue, mainly when dealing with real-world problems in which the ob-

jectives to use are not clear, consists in defining a methodology able to identify the relevant 

objectives from a, sometimes, very high set of objectives. Simultaneously, and this fact can-

not be discarded, these populations are characterized by the existence of complex relations 

between the Decision Variables (DVs) and the objectives, as well as between DVs and DVs 

and objectives and objectives. Thus, make sense the use of data mining methodologies to 

tackle this problem [4]. 

Therefore, the aim of this work is to present a methodology able to tackle multiobjective 

problems in two different ways. First to select the relevant objectives to be used from a high 

pool of potential objectives, and, then to optimize the problem, but, simultaneously, the Deci-

sion Maker (DM) must have a full understanding of the process of optimization, i.e., it must 

be explainable.  

This work is organized as follows. In section 2 the state-of-the-art will be presented. In 

section 3 the methodology proposed is presented in detail. Section 4 is dedicated to describing 

the real problem under study. The results will be presented and discussed in section 5. Finally, 

in section 6 the conclusions are stated. 

2 STATE-OF-THE-ART 
The work related to objective reduction for many objectives optimization existent in litera-

ture can be subdivided into five different categories. The methods in which the aim is to main-

tain the relation of the dominance of the non-dominated solutions [6,7], the methods based on 

unsupervised feature selection [8], the methods based on a comparative analysis between the 
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results obtained when the number of objectives is reduced [9]; the methods based on data 

mining [5,10–12]; and methods based on the use of multi-objective formulations [13].  

The first work was developed by Brockoff and Zitzler [6,7]. The authors proposed the use 

of two different approaches for objectives reduction, each one based on the definition of a dif-

ferent type of problem. In the first problem, the aim was to obtain the minimum objective 

subset of solutions that produces a certain error () defined previously, named -MOSS prob-

lem (- Minimum Objective Subset problem). In the second problem, the aim was to obtain an 

objective subset of solutions with a predefined size (k) and with the minimum possible error, 

named k-EMOSS problem. The authors developed two different algorithms, an exact and a 

greedy algorithm, for each one of these types of problems, which were characterized for 

maintaining the dominance relation. The algorithms were tested using different knapsack 

problems and the DTLZ2, DTLZ5, and DTLZ7 benchmark problems considering different 

numbers of objectives. 

López et al. [8] proposed a methodology based on unsupervised feature selection to ad-

dress the -MOSS and k-EMOSS problems. To divide the objective set into homogeneous 

neighborhoods a correlation matrix obtained from the non-dominated set is used. They con-

sidered that the objectives are more conflicting if the distance between those objectives is 

higher. In this way, only the objectives in the center of the neighborhoods found are kept (and 

the others discarded). The results obtained were compared with those of the reference [7] in 

order to validate the proposed algorithm. 

An algorithm named Pareto Corner Search Evolutionary Algorithm (PCSEA) was pro-

posed by Singh et al. [9]. In this algorithm, the search was made for the solutions on the cor-

ners of the Pareto front based on a ranking scheme instead of searching for the complete 

Pareto front. The relevant objectives are determined by those solutions, while the others are 

discarded. The performance of the methodology proposed was tested with some benchmark 

problems and two engineering problems.  

Principal Component Analysis (PCA) was proposed by Deb and Saxena as an approach for 

the same purpose of objectives reduction named PCA-NSGAII [10]. This was based on the 

hypothesis that if two objectives are negatively correlated, they are conflicting. Thus, the ob-

jectives that can explain most of the variance in the objective space were kept, which corre-

spond to the ones that are the most positive and the most negative of the eigenvectors of the 

correlation matrix. However, a problem with the misunderstanding of the data when it lies in 

sub-manifolds appears and the authors made a new proposal based on nonlinear dimensionali-

ty reduction [11]. In this way, two new algorithms to replace the linear PCA were implement-

ed, one based on correntropy [14] and the other on Maximum Variance Unfolding (MVU). 

Nevertheless, still some problems persist. For example, the method does not provide evidence 

on the means by which objective reduction modifies the dominance structure, it cannot assure 

the conservation of the dominance relation and it does not provide a measure to specify how 

much the dominance relation changes when objectives are eliminated. The methodology was 

tested using DTLZ2 and DTLZ5 benchmark problems with different numbers of objectives. 

Due to those limitations, a different framework was proposed later by the same group 

(Saxena et al. [5]), in which linear and nonlinear objective reduction algorithms are used, 

namely, L-PCA and NL-MVU-PCA. Two different machine learning techniques, PCA and 

MVU, were used to remove the secondary higher-order dependencies in the non-dominated 

solutions. This was very similar to the previous work of the same authors [10,11], the differ-

ence being that this time they proposed a reduction of the number of algorithm parameters and 

an error measure. The same methodology was used by Sinha et al. [15] to develop an iterative 

procedure to reduce the objectives in which a Decision Maker (DM) chose the best solutions. 

The methodology was applied to solve some real-world problems, namely storm drainage and 
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car-side impact. The methodology presented in reference [5] was modified by Duro et al. [12] 

to rank all objectives by order of preference. They solved the -MOSS and k-EMOSS prob-

lems by obtaining, respectively, the smallest set of objectives that can originate the same POF, 

and the smallest objective set corresponding to a minimum pre-defined error and the objective 

sets of a certain size that originates a minimum error. 

Finally, a methodology based on the use of multi-objective evolutionary algorithms was 

proposed by Yuan et al. to solve a MOOP formulation [13]. The approach was used to solve 

some benchmark problems and two real optimization problems. The limitation of this ap-

proach lies in the difficulty of application for problems where the computation cost to evalu-

ate the solutions cannot be neglected, which is not the case with the problems we want to 

study 

Gaspar-Cunha et al. [16] pointed out some disadvantages of the methodologies based on 

PCA, namely the need to use a kernel and, concomitantly, the need to optimize the kernel pa-

rameters. The authors proposed a method for reducing the objectives based on data mining 

that: i) can be applied independently on the type and the size of the data and the shape of the 

Pareto-optimal front; ii) is independent of the choice/definition of the algorithm parameters; 

iii) considers the relations DVs-DVs and objectives-objectives (and not only the relations be-

tween the DVs and objectives), and iv) can provide explainable results for a DM that is a non-

expert in optimization or machine learning. The characteristics of the NL-MVU-PCA meth-

odology were compared with the approach proposed. A summary of this comparison will be 

provided in the next section. 

The contribution of the present work is to extend the previous methodology of reference 

[16] to solve problems with many objectives (in the problem solved here the number of initial 

objectives is 21) in order to choose the better objectives to use during the optimization. Also, 

the proposed methodology will be accessed by comparing the optimization results of 11 runs 

obtained with a different number of objectives using the Hypervolume (HV) and the Inverted 

Generational Distance (IGD) metrics. 

3 METHODOLOGY FOR REDUCING THE NUMBER OF OBJECTIVES 

3.1 Required characteristics 
The principal aim of the works mentioned above was to find a reduced set of objectives 

that could precisely reproduce the results from the original set, which implies that, after the 

reduction procedure, only the redundant objectives could be discarded. However, the aim of 

the present paper is to apply the proposed methodology to complex problems where the rela-

tions between DVs and the objectives are complex and the objectives are partially redundant 

[16].  

Therefore, the methodology developed aims to capture those complex relations and to de-

fine the relative significance of the objectives based on the determination of the objectives–

objectives relations. This allows the definition of the objectives that can be discarded, assum-

ing that a certain error is allowed when compared with the approximation to the optimal Pare-

to front when using all the objectives. This will aid the optimization algorithms in finding a 

POF estimate and makes it easier to explain the results found to the DM. 

On the contrary, the method proposed by Duro et al. [12], named NL-MVU-PCA, aims at 

finding the essential objective set in MaOPs. In this method, PCA runs with the aim to im-

prove the objectives' preference ranking based on the objective–function correlation matrix by 

maximizing the variance in objective space while preserving the local isometry. The optimiza-

tion of the Kernel matrix values is made by the non-linear (NL) approach and the matrix val-

ues are obtained by minimizing the Maximum Variance Unfolding (MVU). 
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In this work, the aim is to use DAMICORE, which is a framework based on the estimation 

of distances by compression algorithms able to assist the analysis that is an important charac-

teristic of the present work, i.e., a small amount of data is available and the system can be de-

pendent on external effects [17, 18]. This method is the core of the Feature Sensitivity 

Optimization based on Phylogram Analysis (FS-OPA) tools that are used to work directly 

with raw data involving the sequence of three main steps [17, 18, 19]: i) the generation of a 

distance matrix from the data using the Normalized Compression Distance (NCD) metric [20]; 

ii) the generation of evolutionary trees using phylogram based modelling for which a distance 

reconstruction algorithm called Neighbour Joining (NJ) is used and, simultaneously, the 

quality of the models is improved by a systematic resampling strategy [21]; iii) to apply a 

Complex Network approach called Fast Newman (FS) to perform community detection by 

analyzing the phylograms found previously and to extract significant and reliable information 

from them [22]. From this analysis, subgroups of data that share common information (DNA), 

designated by clades, identifying the communities are obtained. 

For the purpose of the present work, the implementation of DAMICORE contemplates two 

different levels of learning [23]: 

1. First level learning. The learning approach finds clades, where each one is a cluster of 

variables and objectives that share information. For optimization purposes, each cluster 

shows a set of variables with significant interactions. For example, they can correspond 

to correlated covariates in regression techniques. The output is a Table with a list of 

variables (one cluster) per line. 

2. Second level learning. The potential contribution of each clade, i.e., the decision varia-

bles for the objectives, for example, is estimated. The calculation of all these distances 

allows for determining the output of the second learning level, which has two matrices: 

one with the phylogenetic distances from variables to objectives and another with the 

relative phylogenetic distances between objectives. 

In reference [16] a comparison between the relevant properties of NL-MVU-PCA and FS-

OPA to solve multi-objective optimization problems was made. The most important conclu-

sions are as follows. Concerning the type of analysis, the FS-OPA is able to take into account 

associations objective-objective, variable-variable and variable-objective, while the NL-

MVU-PCA only take into consideration the relations objective-objective. However, the NL-

MVU-PCA is able to take into account objective space reduction. The FS-OPA does not need 

the use of a kernel function or the apriori kernel parameter optimization. Finally, the explain-

ability in the NL-MVU-PCA is implicit while in the FS-OPA is explicit. This is an important 

characteristic since being "explicit" means providing a knowledge representation to help the 

decision-making process, while "implicit" is related to the capacity to determine the relative 

importance of the objectives. 

3.2 Proposed framework 
Figure 1 presents the flowchart of the iterative procedure using FS-OPA to determine the 

best objectives to use in the optimization based on the previous methodology developed for 

reducing the number of objectives [16]. The idea is to start this process using a high number 

of objectives characteristic of some real-world optimization problems. 

After the random generation and the evaluation of an initial set of solutions, the FS-OPA 

determines the phylogram and the distance table objectives-objectives. Then, two different 

options can be pursued.  
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In the automatic procedure, the selection of the number of objectives to be used in the op-

timization is made automatically, using the table of the distance objectives-objectives and ap-

plying the following rules [16]: 

1. choose the objective(s) of the less distant clusters; 

2. choose one objective of the more distant (single) cluster; 

3. choose one objective from each of the remaining clusters. 

In the second procedure, the selection of the objectives is made by the DM(s) using both 

the tables of distances objectives-objectives and the phylogram as follows: 

1. choose the objective(s) of the less distant clusters; 

2. choose one objective of the more distant (single) cluster; 

3. choose objective(s) from each of the remaining clusters taking into account, also, the 

phylogram and the knowledge of the DM(s) about the process.  

Then, if the predefined number of objectives is not reached the process continues, but now 

using the objectives defined in the previous iteration. Otherwise, if the number of objectives is 

satisfactory the iterative process stops and the optimization is done with the reduced number 

of objectives. 

The rules used in this procedure can be explained by taking into consideration that the less 

distant cluster is the one that has more information concerning the process, since it is near of 

most of the decision variables, while the more distant clusters also have some information that 

cannot be lost. Additionally, the intermediate clusters, chosen using rule 3, have some infor-

mation regarding the process that is already present in the objectives selected by the other 

rules 1 and 2 and, thus, only one objective is chosen from these clusters. 

Using the first procedure the final solution is obtained directly without the intervention of 

the DM(s), while in the second procedure, the DM takes part in the process, and therefore, the 

solution found can be straightforwardly explainable to it. 

 

Figure 1. The general procedure of FS-OPA for the reduction of the number of objectives. 

4 PROBLEM TO SOLVE 
The methodology proposed will be applied to the polymer extrusion process illustrated in 

Figure 2. The extruder is constituted by a heated barrel where a screw rotates. In this polymer 

processing technology, a solid polymer is fed into the hopper falling into the barrel due to 

gravity. Then, the solid polymer by the action of the screw rotation is transported to the heat-

ed barrel zone where it melts and, after, this melted polymer is pressurized and forced to cross 

the die that gave the final shape to the product. In this way, the following five functional 
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zones were developed [24, 25]: i) solids conveying in the hopper; ii) solids conveying in the 

initial turns of the screw due to friction between the polymer and the screw and barrel walls; 

iii) melting of the polymer, where a specific mechanism develops; iv) melt conveying of the 

melted polymer; and v) melt conveying in the die.  

To model this process these different steps must be linked coherently, i.e., the data ob-

tained in a certain step is the input data for the subsequent. This modelling will depend on the 

thermal, physical and rheological polymer properties, on the system geometry and on the op-

erating conditions (screw speed and barrel temperature profile). All these aspects were con-

sidered in the modelling program used in the present calculations, for which the details can be 

found elsewhere [25, 26]. 

The aim here is to optimize both, the operating conditions, namely, barrel temperature pro-

file (Tbi) and screw speed (N) and the screw geometry. For the latter, two different screws 

can be fitted in the extruder, a Conventional Screw (CS) and a barrier screw, specifically, a 

Maillefer Barrier Screw (MBS) [24, 26, 27]. The aim of the MBS is to allow for a better and 

faster melting of the polymer. For more details, see references [26, 28]. 

A Low Density Polyethylene (LDPE) is used in the calculations for which the relevant 

properties can be found elsewhere [26]. 

Figure 2 shows the global system geometry where the parameters to optimize are also iden-

tified. The range of variation of the operating conditions are as follows: N  [40, 80] rpm; 

Tb1  [140, 160] °C, Tb2  [150, 170] °C and Tb3  [160, 200] °C. The geometrical param-

eters are presented in Table 1. Since only one type of screw can be fitted in the extruder, an 

additional variable is created, identified by “case”, ranging in the interval [0,1], if “case” is 

lower or equal to 0.5 the screw to be considered is a CS, otherwise, the screw is an MBS. Al-

so, both screws are characterized by some common geometrical parameters (Table 1): length 

of the feed zone (L1) and compression zone (L2), the height of the channel in the feed zone 

(H1) and metering zone (H3), the pitch of the screw (P) and flight channel width (e). For the 

MBS two additional parameters are necessary: the channel height (Hf) and the width (wf) of 

the additional flight. The variables are repeated for the two types of screws in order that dur-

ing the evolutionary process of the multiobjective optimization algorithm used no information 

will be lost. 

The most important aspect to be analyzed within this work is related to the objectives. 

Twenty-one objectives were defined as described in Table 2. These are the objectives defined 

taking into account the knowledge of a DM concerning the thermomechanical behavior of the 

polymer inside the machine as well some local specifications related to the functioning of the 

machine, such as for example the melting length and the viscous dissipation.  

 

Figure 2. Geometry and operating parameters of the extruder to be optimized. 
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Screw Type Decision Variables 
CS 

case 
L1 L2 H1 H3 P e 

  
MBS L1_ L2_ H1_ H3_ P_ e_ Hf wf 

Interval [0, 1] [100, 400] [170, 400] [18, 22] [22, 26] [25, 35] [3, 4] [0.1, 0.6] [3, 4] 

Table 1. Geometrical parameters of both CS and MBS screws. 

ID Description Aim Minimum Maximum 
Q Mass output (kg/hr) max 1 30 

L Length for melting (m) min 0.1 0.85 

T Melt temp. at extruder exit (ºC) min 160 230 

Power Total mechanical power consumption (W) min 0 9200 

WATS Mixing degree max 0 1000 

TTb Average viscous dissipation min 1 2 

TmaxTb Maximum viscous dissipation min 1 2 

Shear_max Maximum shear rate (s-1) max 0 1000 

Ntimes Number of times the temperature is higher than Tb+10 ºC min 0 300 

Pexit Pressure at extruder exit (MPa) max 0 30 

SME Specific mechanical energy (Power*3600/Q) min 300000 2000000 

Z_Ztotal Z/Ztotal, proportional to L above min 0.1 0.85 

Shear_avg Average shear rate (s-1) max 0 1000 

Visco_avg Average viscosity (Pa.s) min 50000 200000 

Davg_max Viscous dissipation of the maximum values in each interval min 1 2 

NCam CAMERON number  max 0.005 0.5 

NPec PECLET number min 100000 3000000 

NBri BRINKMAN number min 2 150 

Nnam NAME number  min 100000 4000000 

Qd Drag volumetric flow at melt conveying zone (m3/s) max 2000000 10000000 

Qp Pressure volumetric flow at melt conveying zone (m3/s) min 5000000 1.5E+08 

Table 2. Objectives, aim of optimization and range of variation. 

5 RESULTS AND DISCUSSION 
This section presents and discusses the results obtained from the case study presented in 

the previous section taking into account the methodology proposed in Figure 1. For that, in 

the first iteration, all 21 objectives (Table 1) will be considered.  

1st iteration: Figure 3 and Table 3 show the results after the application of the FS-OPA to 

a random initial population of solutions. For that purpose, the FS-OPA was applied 10 times 

by changing the order of the solutions randomly and the average is calculated. The phylogram 

of figure 3 presents, in different colors, the clusters obtained and the number of times the lo-

cation of each variable or objective is in the same position represented by the number in the 

circles. From the phylogram the distance between the objectives is calculated, representing 

the distance shown in the phylogram as shown in Table 3, however, due to the size of the Ta-

ble with all objectives included, only the average is presented for this case.  
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Then, from the application of the rules presented in section 3 the following two sets of ob-

jectives, after reduction, were obtained: 

 8 objectives: Pexit, Shear_max, Shear_avg, TTb, WATS, Q, Ntimes, NCam; 

 6 objectives: Pexit, Shear_max, TTb, WATS, Q, NCam. 

2nd iteration: Figure 4 and Table 4 present the results obtained using the FS-OPA for the 

case with 8 objectives while Figure 5 and Table 5 for the case with 6 objectives, as defined by 

the first iteration. 

These phylograms and tables allow a further reduction and the following set of objectives 

were considered: 

 4 objectives – A: Pexit, TTb, Q, Ntimes; 

 4 objectives – B: Pexit, Shear_max, TTb, Q; 

 3 objectives: Shear_max, TTb, Q. 

Finally, the methodology for the reduction of the number of objectives was assessed by 

performing 11 optimizations for each one of the sets of objectives: 21, 8, 6, 4-A, 4-B and 3 

objectives. Then, a statistical comparison using the hypervolume (HV) and the Inverted Gen-

erational Distance (IGD) metrics was made [29,30,31]. To calculate IGD, all Pareto-optimal 

solutions found in each run were put together in a pool and the non-dominated solutions of 

this pool were used for comparison. 

 

Figure 3. Phylogram obtained considering 21 objectives (the colors identify the clusters found). 

The procedure adopted was the following: i) to do 11 optimization runs for 21, 8, 6, a-A, 4-

B and 3 objectives; ii) to all cases the 21 objectives were used for all sets of objectives; iii) to 

293



A. Gaspar-Cunha, P. Costa, F. Monaco and A. Delbem 

calculate the HV and the IGD metrics: iv) to determine the average, standard deviation and 

the percentage of reduction/increase relative to the runs with 21 objectives. 

The results are presented in Table 6. If HV increases and IGD decreases means that the op-

timal Pareto fronts are better. Thus, better optimization results were obtained for the case with 

6 objectives A, i.e., for the case with objectives Pexit, Shear_max, TTb, WATS, Q and NCam. 

This can be understood due to the fact that the use of MOEAs with many objectives causes 

some difficulties to the algorithms and better results can be obtained when using a lower 

number of objectives, even if the comparison is made using 21 objectives for an optimization 

run with only 6 objectives. 

However, further study is necessary to compare better the results obtained with less than 6 

objectives and to determine a better way for comparing the results obtained using, for exam-

ple, the runs with 6 objectives. 

 

 
Average 

'Q' 0.38 

'L' 0.38 

'T' 0.56 

'Power' 0.35 

'WATS' 0.35 

'TTb' 0.55 

'TmaxTb' 0.55 

'Shear_max' 0.38 

'Ntimes' 0.38 

'Pexit' 0.34 

'SME' 0.34 

'Z_Ztotal' 0.38 

'Shear_avg' 0.31 

'Visco_avg' 0.49 

'Davg_max' 0.49 

'NCam' 0.41 

'NPec' 0.33 

'NBri' 0.41 

'Nnam' 0.41 

'Qd' 0.39 

'Qp' 0.41 

Table 3. Average of the distance between objectives considering 21 objectives. 

294



A. Gaspar-Cunha, P. Costa, F. Monaco and A. Delbem 

 

 

Figure 4. Phylogram obtained considering 8 objectives (the colors identify the clusters found). 

 
'Q' 'WATS' 'TTb' 'Shear_max' 'Ntimes' 'Pexit' 'Shear_avg' 'NCam' Average 

'Q' 0.00 0.07 0.64 0.71 0.71 0.21 0.21 0.21 0.34 

'WATS' 0.07 0.00 0.64 0.71 0.71 0.21 0.21 0.21 0.34 

'TTb' 0.64 0.64 0.00 0.14 0.14 0.50 0.64 0.64 0.41 

'Shear_max' 0.71 0.71 0.14 0.00 0.07 0.56 0.71 0.71 0.45 

'Ntimes' 0.71 0.71 0.14 0.07 0.00 0.56 0.71 0.71 0.45 

'Pexit' 0.21 0.21 0.50 0.56 0.56 0.00 0.21 0.21 0.30 

'Shear_avg' 0.21 0.21 0.64 0.71 0.71 0.21 0.00 0.07 0.34 

'NCam' 0.21 0.21 0.64 0.71 0.71 0.21 0.07 0.00 0.34 

Table 4. Distance between objectives for the case with 8 objectives. 

 
'Q' 'WATS' 'TTb' 'Shear_max' 'Pexit' 'NCam' Average 

'Q' 0.00 0.07 0.73 0.20 0.27 0.27 0.25 

'WATS' 0.07 0.00 0.73 0.20 0.27 0.27 0.25 

'TTb' 0.73 0.73 0.00 0.73 0.80 0.80 0.63 

'Shear_max' 0.20 0.20 0.73 0.00 0.13 0.13 0.23 

'Pexit' 0.27 0.27 0.80 0.13 0.00 0.07 0.25 

'NCam' 0.27 0.27 0.80 0.13 0.07 0.00 0.25 

Table 5. Distance between objectives for the case with 6 objectives. 
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Figure 5. Phylogram obtained considering 6 objectives (colors identify the clusters found). 

 

21 Objs 8 Objs 6 Objs 

AVG STD AVG STD  AVG STD 

HV 9.9E-06 6.9E-06 4.6E-05 4.5E-05 3.6E+02 5.8E-04 7.0E-05 5.7E+03 
IGD 9.6E-01 1.6E-01 8.6E-01 1.3E-01 -1.0E+01 4.0E-01 1.3E-02 -5.9E+01 

Table 6. Performance comparison using Hypervolume and IGD for the total number of objectives (21) and the 

automatic reduction to eight, six, four and three objectives ( represents the gain or loss percentage relative to 21 
objectives). 

  

4 Objs - A 4 Objs - B 3 Objs 

AVG STD  AVG STD  AVG STD 

HV 8.7E-05 2.9E-06 7.8E+02 5.0E-06 2.0E-05 -5.0E+01 2.1E-06 2.9E-07 -7.9E+01 

IGD 7.5E-01 3.1E-02 -2.2E+01 8.2E-01 2.2E-02 -1.4E+01 9.5E-01 4.0E-02 -8.6E-01 

Table 6. (continuation). 

6 CONCLUSIONS  
An efficient methodology for reducing the number of objectives is proposed to help the 

DM to solve real-world optimization problems. Starting from a big set of objectives it was 

possible to conclude that the better way to optimize a multi-objective optimization problem is 

using the most relevant objectives, i.e., a reduced set of objectives. 

296



A. Gaspar-Cunha, P. Costa, F. Monaco and A. Delbem 

Further work will concentrate on finding a better framework to deal with the higher num-

ber of objectives, mainly in what concerns the comparison of Pareto fronts after optimization 

REFERENCES  
[1] K. Deb, Multi-Objective Optimization using Evolutionary Algorithms, Wiley, Chiches-

ter, UK, 2001. 

[2] A. Carlos, C. Coello, B.L. Gary, A.V.V. David, Evolutionary Algorithms for Solving 

Multi-Objective Problems, 2nd ed., Springer: New York, NY, USA, 2007. 

[3] I. Boussaïd, J. Lepagnot, P. Siarry, A survey on optimization metaheuristics. Inf. Sci., 

237, 82–117, 2013. 

[4] S. Bandaru, A.H.C. Ng, K. Deb, Data mining methods for knowledge discovery in mul-

ti-objective optimization: Part A—Survey. Expert Syst. Appl., 70, 139–159, 2017. 

doi:10.1016/j.eswa.2016.10.015. 

[5] D.K. Saxena, J.A. Duro, A. Tiwari, K. Deb, Q. Zhang, Objective Reduction in Many-

Objective Optimization: Linear and Nonlinear Algorithms in IEEE Trans. Evol. Com-

put., 17, 77–99, 2013. doi:10.1109/tevc.2012.2185847. 

[6] D. Brockhoff, E. Zitzler, Are All Objectives Necessary? On Dimensionality Reduction 

in Evolutionary Multiobjective Optimization in Lecture Notes in Computer Science, 

Springer: Berlin/Heidelberg, Germany, 533–542, 2006. doi:10.1007/11844297_54. 

[7] D. Brockhoff, E. Zitzler, Objective Reduction in Evolutionary Multiobjective Optimiza-

tion: Theory and Applications, Evol. Comput., 17, 135–166, 2009. 

doi:10.1162/evco.2009.17.2.135. 

[8] J.A. López, C.C.A. Coello, D. Chakraborty, Objective reduction using a feature selec-

tion technique in Proceedings of the 10th Annual Conference on Genetic and Evolu-

tionary Computation—GECCO ’08, Atlanta, GA, USA, 12–16, 2008. 

doi:10.1145/1389095.1389228 

[9] H.K. Singh, A. Isaacs, T. Ray, A Pareto Corner Search Evolutionary Algorithm and 

Dimensionality Reduction in Many-Objective Optimization Problems, IEEE Trans. 

Evol. Comput., 15, 539–556, 2011. doi:10.1109/tevc.2010.2093579. 

[10] K. Deb, D.K. Saxena, Searching for Pareto-optimal solutions through dimensionality 

reduction for certain large-dimensional multi-objective optimization problems in Pro-

ceedings of the 2006 IEEE Congress on Evolutionary Computation (CEC’2006), IEEE: 

Vancouver, BC, Canada, 3353–3360, 2006. 

[11] D.K. Saxena, K. Deb, Non-linear Dimensionality Reduction Procedures for Certain 

Large-Dimensional Multi-Objective Optimization Problems: Employing Correntropy 

and a Novel Maximum Variance Unfolding in Evolutionary Multi-Criterion Optimiza-

tion. S. Obayashi, K. Deb, C. Poloni, T. Hiroyasu, T. Murata, eds. Springer: Ber-

lin/Heidelberg, Germany, Vol. 4403, 2007. https://doi.org/10.1007/978-3-540-70928-

2_58 

[12] J.A. Duro, K.D. Saxena, K. Deb, Q. Zhang, Machine learning based decision support 

for many-objective optimization problems in Neurocomputing, 146, 30–47, 2014. 

doi:10.1016/j.neucom.2014.06.076 

297

https://doi.org/10.1007/978-3-540-70928-


A. Gaspar-Cunha, P. Costa, F. Monaco and A. Delbem 

[13] Y. Yuan, Y.-S. Ong, A. Gupta, H. Xu, Objective Reduction in Many-Objective Optimi-

zation: Evolutionary Multiobjective Approaches and Comprehensive Analysis. IEEE 

Trans. Evol. Comput., 22, 189–210, 2018. doi: 10.1109/TEVC.2017.2672668. 

[14] A. Gunduz, J.C. Principe, Correntropy as a novel measure for nonlinearity tests. Signal 

Processing, 89, 14–23, 2009. doi:10.1016/j.sigpro.2008.07.005. 

[15] A. Sinha, D.K. Saxena, K. Deb, A. Tiwari, Using objective reduction and interactive 

procedure to handle many-objective optimization problems. Appl. Soft Comput., 13, 

415–427, 2013. doi:10.1016/j.asoc.2012.08.030. 

[16] A. Gaspar-Cunha, P. Costa, F. Monaco, A. Delbem, Many-Objectives Optimization: A 

Machine Learning Approach for Reducing the Number of Objectives. Math. Comput. 

Appl., 28, 17, 2023. https://doi.org/10.3390/mca28010017  

[17] A. Sanches, J.M. Cardoso, A.C. Delbem, Identifying merge-beneficial software kernels 

for hardware implementation in Proceedings of the International Conference on Recon-

figurable Computing and FPGAs (ReConFig), Cancun, Mexico, 74–79, 2011. 

[18] F.G.Z. Kharrat, F., N.S.B. Miyoshi, J. Cobre, J. Mazzoncini De Azevedo-Marques, P. 

Mazzoncini de Azevedo-Marques, A.C.B. Delbem, Feature sensitivity criterion-based 

sampling strategy from the Optimization based on Phylogram Analysis (Fs-OPA) and 

Cox regression applied to mental disorder datasets in PLOS ONE, Vol. 15, 2020. 

[19] A. Soares, R. Râbelo, A.C.B. Delbem, Optimization based on phylogram analysis in 

Expert Systems with Applications, Vol. 78, 32-50, 2017. 

[20] J.P. Martins, C.M. Fonseca, A.C.B. Delbem, On the performance of linkage-tree genetic 

algorithms for the multidimensional knapsack problem in Neurocomputing, Vol. 146, 

17-29, 2014. 

[21] R. Cilibrasi, P.M.B. Vitanyi, Clustering by Compression in IEEE Trans. Inf. Theory, 

Vol. 51, 1523-1545, 2005. 

[22] M.E.J. Newman, Fast algorithm for detecting community structure in networks Phys. 

Rev. E., Vol. 69, 066133, 2004. 

[23] A. Sanches, J. M. P. Cardoso, A. C. B. Delbem, Identifying Merge-Beneficial Software 

Kernels for Hardware Implementation,  2011 International Conference on Reconfigura-

ble Computing and FPGAs, 2011.  doi:10.1109/reconfig.2011.51 

[24] C. Rauwendaal, Polymer Extrusion, Carl Hanser Verlag, Munich, 2001. 

[25] A. Gaspar-Cunha, Modelling and Optimisation of Single Screw Extrusion Using Multi-

Objective Evolutionary Algorithms, 1st ed. Koln, Germany, Lambert Academic Pub-

lishing, 2009. 

[26] A. Gaspar-Cunha, J. A. Covas, The Plasticating Sequence in Barrier Extrusion Screws 

Part I: Modeling, Polymer Engineering and Science, 54(8), 1791–1803, 2014. 

doi:10.1002/pen.23722/full  

[27] C. Rauwendaal, Extruder screws with barrier sections, Polymer Engineering and Sci-

ence, 26(18), 1245–1253, 1986. doi:10.1002/pen.760261804 

[28] A. Gaspar-Cunha, J. A. Covas, The Plasticating Sequence In Barrier Extrusion Screws 

Part II: Experimental Assessment. Polymer-Plastics Technology and Engineering, 

53(14), 1456–1466, 2014. doi:10.1080/03602559.2014.909482 

298

https://doi.org/10.3390/mca28010017


A. Gaspar-Cunha, P. Costa, F. Monaco and A. Delbem 

[29] I. Hisao, M. Hiroyuki, T. Yuki, N. Yusuke, Modified distance calculation in generation-

al distance and inverted generational distance in Evolutionary Multi-Criterion Optimiza-

tion. A. Gaspar-Cunha, C.H. Antunes, C. Coello Coello, eds. Springer International 

Publishing: Cham, Switzerland, 110–125, 2015. 

[30] C.M. Fonseca, L. Paquete, M. López-Ibáñez, An improved dimension sweep algorithm 

for the hypervolume indicator in Proceedings of the 2006 Congress on Evolutionary 

Computation (CEC 2006), Vancouver, BC, Canada, 16–21, 1157–1163, 2006. 

doi:10.1109/CEC.2006.1688440. 

[31] pymoo: Multi-objective Optimization in Python. Available online: 

https://pymoo.org/misc/indicators.html#nb-hv (accessed on 5 November 2022). 

299

https://pymoo.org/misc/indicators.html#nb-hv


EUROGEN 2023
15th ECCOMAS Thematic Conference on

Evolutionary and Deterministic Methods for Design, Optimization and Control
N. Gauger, K. Giannakoglou, M. Papadrakakis, J. Periaux (eds.)

Chania, Crete Greece, 1-–3 June 2023

AGGREGATION-FREE FATIGUE CONSTRAINED TOPOLOGY
OPTIMIZATION USING THE CONSTRAINED NATURAL ELEMENT

METHOD

Yanda Chen1, Eric Monteiro1, Imade Koutiri1, Véronique Favier1
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Abstract. Fatigue resistance is one of the most important design criteria to ensure the safety
of mechanical structures. In this paper, a topology optimization methodology for volume min-
imization under local fatigue constraints based on the augmented Lagrangian method and the
constrained natural element method is proposed. The Sines fatigue criteria is used to define
the equivalent alternating and average stresses to address fatigue resistance of additive man-
ufactured Ti-6Al-4V alloy structure for infinite life. Since the fatigue criteria under consider-
ation is based on stress invariants, the fatigue-driven problem has the same difficulties as the
stress-based topology optimization problem, so that similar strategies can be used to circum-
vent the problem of stress singularity and the need for a large number of evaluation points.
Although a large number of constraints are required to maintain the local nature of stress, the
formulation presented requires only one adjoint vector, which leads to an efficient sensitivity
assessment. Several numerical examples are presented to demonstrate the effectiveness of the
proposed method.

300



Yanda Chen, Eric Monteiro, Imade Koutiri and Véronique Favier

1 INTRODUCTION

Topology optimization (TO) aims at determining the optimal material distribution within
the design domain for a given set of boundary conditions. On one hand, the physical prob-
lems can be solved by numerical methods like the finite element method (FEM) or meshless
methods. On the other hand, the optimization can be completed by mathematical program-
ming techniques such as the method of moving asymptotes (MMA) or the method based on
the augmented Lagrangian (AL) formula. Several TO approaches have been proposed since the
pioneer work by Bendsøe and Kikuchi in 1988 [1], namely density-based method, level set-
based method, homogenization method and evolutionary structural optimization method. The
comparison and critical review of the above methods have been given in detail by Sigmund and
Maute [2].

Typically, designs generated by TO often include free-form and complex shapes that are
complicated or cannot be manufactured using traditional production methods. However, TO
designs are well suited for additive manufacturing processes that have more relaxed design
rules and can easily replicate complex shapes without additional cost. Additive manufactured
materials and components for critical load-bearing applications are usually subjected to cyclic
loading and fatigue failure is a major consideration in their design. In addition, due to the multi-
axial nature of the loads and complex geometries manufactured by additive manufacturing, it is
necessary to take multi-axial fatigue into account in TO. Fatigue constrained TO aims to reduce
the overall mass by finding the (local) optimal material distribution that satisfies the specific
fatigue criteria for a given set of cyclic loads.

TO was first formulated as minimizing the strain energy, i.e., the compliance that obeys the
volume constraint. The elaboration of this concept led to the application to a variety of static
responses, dynamic responses and even multiphysics system responses. However, these designs
ignore material strength limitations and still require manual adjustments or shape optimization
to enable the structure to withstand the applied loads. In order to produce structural components
that meet specific functional requirements, structural failure must be prevented at every point of
the component, for example, by developing specific topology optimization schemes that allow
the design to meet a given stress-based requirement and even maintain the life of the structure
during a given number of load cycles. The main issues encountered in stress and fatigue based
topology optimization are the singularity phenomenon and the large-scale optimization problem
caused by the local behavior of stresses.

Several static and quasi-static fatigue models have been developed for topology optimization
of linear elastic structures, thereby avoiding the high computational cost when facing a large
number of loading sequences. Sherif et al. [3] addressed the dynamic property of load condi-
tions in TO by applying equivalent static loads. The work by Holmberg et al. [4] introduced
the fatigue constrained TO based on probability, where the critical fatigue state was determined
as the maximum stress level exceeding the allowable cumulative damage. Jeong et al. [5] de-
veloped the TO method with dynamic fatigue and static failure constraints under proportional
loads. Lee et al. [6] assessed a TO method subjected to fatigue failure in the frequency do-
main for random load. Collet et al. [7] proposed an optimization tool for lightweight design
accompanied by compliance and fatigue constraints through a modified Goodman failure crite-
ria based on the Sines theory. Using the Palmgren-Miner’s linear damage rule, S-N curves and
Sines fatigue criteria, Oest and Lund [8] investigated TO under finite-life fatigue constraints.
Zhang et al. [9] performed fatigue-based TO under non-proportional loading. Suresh et al. [10]
proposed a fatigue constrained TO formulation based on continuous-time approach to consider

301



Yanda Chen, Eric Monteiro, Imade Koutiri and Véronique Favier

general load histories including non-proportional loads. Chen et al. [11] considered the fatigue
constrained TO with cumulative fatigue damage and discussed the influence of damage penal-
ization parameters and load parameters on the final design. In addition to the SIMP method used
in the above studies, the fatigue-constrained TO problem has also been solved by the evolution-
ary structural optimization method (Nabaki et al. [12]). The similarities of the above studies
lie in the use of FEM to solve the equilibrium equation and employ aggregation technology or
active set strategy to reduce the number of constraints.

The most widely employed Lagrangian-type finite elements suffer from numerical instabil-
ities, such as checkerboard pathology and single-node connections (Diaz and Sigmund [13]).
A feasible alternative is to use polygonal finite elements to suppress checkerboard patterns and
reduce mesh dependence (Talischi et al. [14]- [16]). However, due to technical difficulties, there
are no reliable processors available to create high-quality polytopal meshes for 3D complex ge-
ometries, which limits their application to TO over complex design domains. To overcome the
mesh dependency, several meshless methods have been applied in conventional compliance-
based TO problems (Li and Atluri [17]; Luo et al. [18]; Shobeiri [19]) and they have recently
started to be applied to TO problems based on stress constraints (Ullah et al. [20]). The ma-
jor drawback of the commonly used meshless method, such as Element-free Galerkin Method,
is the way to impose the essential boundary conditions since the interpolation function does
not satisfy the Kronecker delta property. To address this problem, Chen et al. [21] applied the
constrained natural element method (CNEM) in tandem with solid isotropic material with pe-
nalization method (SIMP) to TO problems. In addition, aggregation technology reduces the
computational cost at the expense of losing control over the local behavior and lead to highly
nonlinear which makes the solution become unstable and parameter dependent. The disadvan-
tage of the active set approach lie in the active set may still become relatively large during
optimization, since the stresses in the optimized design are usually uniformly distributed, lead-
ing to a large number of elements approaching the stress limit.

In this paper, the method based on CNEM and SIMP is applied to deal with a class of
TO problems with fatigue constraints under sinusoidal cyclic loading. Furthermore, a scheme
based on the AL method is adopted, which deals with the TO problem according to the local
definition of stress without using the constraint aggregation technique. Since the given formula
requires only one adjoint vector, this leads to an efficient sensitivity analysis. Several TO results
with Sines fatigue criteria constraints are provided. The reminder of the paper is organized as
follows. Section 2 introduces the construction of interpolation function and the calculation
of numerical integration of CNEM. Section 3 presents the fatigue constrained TO formula of
continuum structures and the implementation of AL. Then, several numerical examples are
shown in Section 4. Finally, section 5 gives the concluding comments of this paper.

2 The Constrained Natural Element Method

The natural element method (NEM) is an efficient numerical method which was proposed
by Braun and Sambridge [22] to solve partial differential equations along with highly irregular
meshes. Sukumar et al. [23] has shown that the interpolation between adjacent nodes along
any convex boundary in NEM is strictly linear, which facilitates the application of essential
boundary conditions. However, on non-convex boundaries, they may be influenced by the nodes
located in the domain or over the non-convex boundary far from the node under consideration.
To address this phenomenon, Yvonnet et al. [24] proposed the CNEM, which introduced the
visibility criteria in NEM to restrict the natural neighborhood relations of the selected node pairs
to construct the interpolation function in 2D. On this basis, Illoul and Lorong [25] extended its

302



Yanda Chen, Eric Monteiro, Imade Koutiri and Véronique Favier

application to 3D.

2.1 Constrained Voronoi Diagram

In the NEM, the Voronoi diagram of a cloud of nodes, shown in Fig. 1, divides the bounded
domain ΩD in D-dimensions into a group of Voronoi cells Vi, such that any point M within Vi

is closer to node i than any other node j(j ̸= i):

Vi =
{
M ∈ ΩD : d (x,xi) ≤ d (x,xj)∀j ̸= i

}
(1)

where x and xi represent the coordinates of point M and node i respectively while d (x,xj)
is the Euclidean distance between point M and node j. According to this definition, if a line
segment connecting two neighbors crosses the domain boundary Γ, then node i influences node
j, which is incorrect, see Fig. 2. To overcome this issue, a visibility criteria is introduced in the
definition of Voronoi diagram to give rise to the constrained Voronoi diagram:

VC
i =

{
M ∈ ΩD : d (x,xi) ≤ d (x,xj)∀j ̸= i ∩ x is visible from i and j

}
(2)

Figure 1: Voronoi diagram of a cloud of N nodes in 2D (left) and 3D (right)

Figure 2: Visibility criterion (left) and constrained Voronoi cell of node c (right)
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2.2 Construction of the Interpolation Function

There exist different interpolation procedures based upon natural neighborhoods for CNEM.
The Sibson interpolant [26] is one of the most widely used and its construction in 2D is shown
in Fig. 3. First, the original constrained Voronoi diagram is modified locally by introducing a
new Voronoi cell attached to point x (blue area). Then, the interpolation function is computed
based on the geometrical considerations:

ϕi(x) =
Vi(x)

V (x)
with V (x) =

n∑
j=1

Vj(x) (3)

where Vi(x) is the Lebesgue measure of the intersection (green area) of Voronoi cell VC
i (yellow

area) and the new Voronoi cell VC
x (blue area), V (x) represents the Lebesgue measure of the

new Voronoi cell VC
x and n is the number of natural neighbors of point x. Unlike the FEM

and other meshless methods, the construction of interpolation functions in CNEM is purely
geometric, which does not involve user-defined parameters. Sibson interpolant satisfies the
Kronecker delta property, the partition of unity property and the linear consistency [23]:

ϕi (xj) = δij,
n∑

i=1

ϕi(x) = 1, u(x) =
n∑

i=1

ϕi(x)ui (4)

Figure 3: Process to compute Sibson interpolant in 2D

2.3 Discrete Weak Form

The governing equation of equilibrium of a linear elastic body Ω can be expressed as:

∇Tσ + b = 0 (5)

subjected to the boundary conditions:

σn = t
u = u

(6)

where σ and b are the stress tensor and body force vector respectively, t stands for the prescribed
traction vector on the Von Neumann boundary Γt and u represents the prescribed displacement
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vector over the Dirichlet boundary Γu, n is the outer normal unit vector to the boundary Γ =
Γt ∪ Γu. Introducing any arbitrary function δu, the associated weak form yields to:

∫
Ω

δεTσdΩ−
∫
Ω

δuTbdΩ−
∫
Γt

δuT t̄ dΓ = 0 (7)

In order to obtain the CNEM discrete weak form, the design domain Ω is represented by appro-
priately distributed nodes and the corresponding constrained Voronoi diagram. Then, using Eq.
3, the displacement at any position x can be expressed by:

uh(x) =
n∑

i=1

Φi(x)ui (8)

where Φi and ui are the interpolation function matrix and displacement vector of node i respec-
tively. The strain vector εh at position x reads:

εh(x) = Luh(x) =
n∑

i=1

Bi(x)ui (9)

where L is the differential operator matrix and Bi represents the strain-displacement matrix of
node i. Finally, using the constitutive equation, the stress tensor σh can be obtained by:

σh(x) =
n∑

i=1

CBi(x)ui (10)

where C is the material constitutive matrix. Substituting Eqs. 8, 9 and 10 into Eq. 7, the
discrete weak form reads:

N∑
j=1

N∑
i=1

δuT
j

(∫
Ω

BT
j CBidΩ

)
ui =

N∑
j=1

δuT
j

(∫
Γt

ΦT
j t̄ dΓ

)
(11)

where N is the number of nodes. Using the arbitrariness of δu, Eq. 11 yields to the following
matrix system:

Ku = f (12)

where K is the global stiffness matrix while u and f are the displacement and the force vectors
respectively.

The non-polynomial nature of the CNEM interpolation function leads to the use of a large
number of Gauss integration points for the accurate computation of Eq. 12. To overcome
this, the stabilized conforming nodal integration scheme (SCNI) proposed by Chen et al. [27]
is applied in this study. In SCNI, the strain smoothing is performed to stabilize the nodal
integration:

εi(x) =
1

Vi(x)

∫
Ωi

Bi(x)uidΩ =
1

Vi(x)

∮
Γi

Φi(x)ui · ndΓ (13)
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3 Formulation of Fatigue Constrained Topology Optimization Problem

This section is devoted to the development of a TO formulation which considers cyclic fa-
tigue failure within the framework of the SIMP method. In industry, fatigue life is usually
expressed in terms of service time, and specific parts are designed for a predetermined period
of use. Therefore, there is no need to design parts for infinite life. However, the mechanical
parts are designed using the so-called safe life approach such that fatigue failure will not occur
during a specific finite life, or before predetermined service intervals. To perform fatigue life
prediction for a given design, the high cycle fatigue life is modeled and assume that only elastic
deformation occurs during cyclic loading. Inertial effects are also neglected, so that the stress
state at each moment in the loading history is obtained by static linear elasticity analysis. The
general optimization statement can be expressed mathematically as follows:

inff(ρ) =
N∑
i=1

ρiVi

s.t.

{
gi(ρ,u) ≤ 0, i = 1, . . .m

0 ≤ ρj ≤ 1, j = 1, . . . N
(14)

with: K(ρ)u = f

where f(ρ) is the objective function, ρ is the vector of design variables, gi is i-th fatigue con-
straint, which depends not only on the design variables, but also on the displacement, m repre-
sents the number of constraints.

3.1 Density Based Method

The direct use of design variable ρ to solve Eq. 14 does not make it a well-posed problem. In
this study, the polynomial filter used by Zegard and Paulino [28] is adopted, such that ρ̃ = Fρ.
The (i, j)th component of filter matrix F is calculated as:

Fij =
Hijρj∑N
k=1Hikρk

, with Hij = max

[
0, 1− d (xi,xj)

R

]s
(15)

where R is the radius of the filter and exponent s ≥ 1 is the index of the filter.
The polynomial filter reduces to a conventional linear filter when s = 1. The advantage of

using a polynomial instead of a linear function is that it reduces the influence of more distant
elements and facilitates more abrupt changes in density, thereby better defining the material
boundaries.

To obtain a black-and-white design without numerical instability, the so-called three field
approach (Sigmund and Maute [2]) is adopted, which operates with the design variable ρ, the
filtered field ρ̃ and the projected field ρ̄. The Heaviside projection function used in this study is
expressed as follows (Wang et al. [29]):

ρ̄i =
tanh(βη) + tanh [β (ρ̃i − η)]

tanh(βη) + tanh[β(1− η)]
(16)

where β controls the slope of the function near the projection threshold parameter η.
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Finally, the stiffness matrix K in Eq. 14 is calculated through a typical assembly process:

K(ρ) = AN
i=1Ki, with Ki = [ϵ+ (1− ϵ)ρ̄pi ]Ki0 (17)

where Ki is the stiffness matrix of VC
i , A is an assembly operator, ϵ is the Ersatz parameter to

prevent singularity, p is the penalty factor, Ki0 is the stiffness matrix of VC
i when ρ̄i = 1.

3.2 Multi-axial High Cycle Fatigue Criteria

Due to different dominant mechanisms, fatigue is usually heuristically classified into low
cycle fatigue and high cycle fatigue. Low-cycle fatigue analysis involves loads in the range of
1− 104 cycles, while high-cycle fatigue is typically in the range of 104 − 108 cycles. For high
cycle fatigue, the stress-based fatigue criteria are widely used. Among the current stress-based
multiaxial fatigue criteria, the Sines (Sines, [30]) criteria is attractive for the engineering design
of high-performance fatigue components due to its ease of use. The Sines criteria is expressed
as follows: √

J i
2,a + αs σ

i
H,mean ≤ βs (18)

where the parameters αs and βs are material parameters given by:

αs = 6t−1/f0 −
√
3 and βs = t−1 (19)

where t−1 represents fully reversed torsion fatigue limit, f−1 and f0 are the fatigue limits under
fully reversed bending and repeated bending, respectively. J i

2,a and σi
H, mean represent, respec-

tively, the amplitude of the second deviatoric stress tensor invariant over one cycle and the mean
value of hydrostatic stress for node i:

{
J i
2,a = σT

i,aMσi,a

σi
H, mean =

σi
xx, mean +σi

yy, mean
3

(20)

where σi,a is the amplitude of Cauchy stress tensor of node i during cyclic loading time T and
σi
∗∗, mean is the mean value of Cauchy stress component. The matrix M stands for the so-called

second deviatoric stress tensor invariant matrix whose definition in 2D plane stress states:

M =

 1/3 −1/6 0
−1/6 1/3 0

0 0 1

 (21)

3.3 Augmented Lagrangian Method

Instead of the popular MMA technique in the literature for fatigue constrained TO problems,
an attractive approach to solve the optimization statement in Eq. 14 while satisfying the local
fatigue constraint is the AL method. AL deals with local constraints by adding them to the
objective function in the form of a penalty term. The solution to the constrained optimization
problem is then obtained by solving a series of unconstrained optimization problems, each of
which aims at minimizing the AL function J(ρ,λ, µ). The unconstrained optimization problem
in each AL iteration is expressed as follows:
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inf J (k)(ρ) = f(ρ) +
1

N
P (k)(ρ) (22)

where the penalization term is

P (k)(ρ,u) =
N∑
j=1

[
λ
(k)
j hj(ρ,u) +

µ(k)

2
hj(ρ,u)

2

]
(23)

involving equality constraints

hj(ρ,u) = max

[
gj(ρ,u),−

λ
(k)
j

µ(k)

]
(24)

where λ
(k)
j is the Lagrange multiplier estimator at the k-th iteration and µ(k) > 0 a penalty

coefficient. Both unknowns are updated at each iteration as follows (Senhora et al. [31]):

µ(k+1) = min
[
γµ(k), µmax

]
and λ

(k+1)
j = λ

(k)
j + µ(k)hj

(
ρ(k),u

)
(25)

where γ > 1 is a constant parameter and µmax is the upper limit which is used to prevent
numerical instabilities. Iterations stop when both following criteria are satisfied

1

N

∣∣ρ(k+1) − ρ(k)
∣∣ ≤ δ and max

(√
J2,a + αs σH,mean

)
− βs ≤ δs (26)

where δ and δs are the prescribed tolerance values for design variables and fatigue constraints,
respectively. If both criteria are not satisfied, optimization terminates after a given number of
iterations.

4 Numerical Results

Several numerical results are given in this section to demonstrate the performance of the
proposed method. Table 1 shows the AL parameters used in this study. The mechanical and
fatigue parameters of the additive manufactured Ti-6Al-4V alloy, coming from Mower and
Long, [32] and Fatemi et al. [33], are listed in Table 2.

4.1 2D L-bracket

The L-bracket TO problem is one of the most widely studied problem in literature. The
design domain and boundary conditions are shown in Fig. 4. The model is fully constrained
at the top left edge, and a sinusoidal distributed load with an amplitude of 850N and a mean
value of 0 is applied to the upper right free end along the distance d = 6mm. The length and
thickness of this model are L = 100mm and t = 1mm respectively while the radius of the filter
is R = 5mm.

First, six models involving 26001, 58201 and 103201 regular or irregular Voronoi cells,
depicted in Fig. 5, are used here to check mesh sensitivity. The optimized geometries obtained
by the proposed method are plotted in Fig. 5 as well as the normalized Sines fatigue constraint
maps. The results are very close for the different discretization schemes: it seems that there is
no mesh sensitivity. Moreover, the fatigue constraints are always locally satisfied and the von
Mises stress, plotted in Fig. 6, is lower than the Yield stress everywhere.
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Parameter Description Value
ρ(0) Initial density vector 0.5
β Initial Heaviside projection penalization factor 1

βmax Maximum Heaviside projection penalty factor 10
η Heaviside projection threshold 0.5

λ(0) Initial Lagrange multiplier vector 0
µ(0) Initial penalty coefficient 10
γ Penalty factor updating parameter 1.1
q Nonlinear filter index 3.5
δ Convergence tolerance of design variables for AL 0.002
δs Convergence tolerance of stress constraints for AL 0.003

MaxIter Maximum number of external loops 150

Table 1: Input parameters used in this study.

Parameter Description Value
E0 Young’s modulus 108.8 GPa
µ Poisson’s ratio 0.29
σ̄ Yield stress 972 MPa
f−1 Fully reversed bending fatigue limit 454 MPa
t−1 Fully reversed torsional fatigue limit 300 MPa
f0 Fully repeated bending fatigue limit 315 MPa

Table 2: Mechanical and fatigue parameters for Ti-6Al-4V alloy.

Figure 4: Design domain and boundary conditions of 2D L-bracket problem
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Figure 5: Sines fatigue criteria constrained TO results and normalized constraint maps under (a) regular mesh and
(b) irregular mesh

4.2 2D Portal Frame

The second optimization problem is a portal frame whose geometry and boundary conditions
are presented in Fig. 7. Geometrical parameters are listed in Table 3. The non convex domain
is discretized using three different numbers of Voronoi cells. In order to obtain symmetric solu-
tions, the design variables on the left and right sides are symmetrized during the optimization.
Optimal geometries and normalized fatigue constraint maps depicted in Fig. 8 are obtained by
using a filter radius R = 6mm. One can observe that there is no mesh sensitivity for the number
of Voronoi cells used and that the fatigue constraints are locally satisfied. Moreover, the von
Mises stress, shown in Fig. 9, is lower than the Yield stress of the material everywhere: Sines
fatigue criteria seems to be more conservative than von Mises stress constraint.
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Figure 6: Von Mises stress map for 2D L-bracket problem, unit: MPa

Figure 7: Design domain and boundary conditions of 2D portal frame

Parameter Description Value
L Length 120 mm
H Height 60 mm
h Concave height 35 mm
b Bearing length 5.5 mm
t Thickness 1 mm
d Load distribution distance 10 mm
f Load amplitude 1400 N

Table 3: Parameters for the 2D portal frame problem.
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Figure 8: TO results and normalized constraint maps based on Sines fatigue constraints

Figure 9: Von Mises stress map for 2D portal frame problem, unit: MPa

5 CONCLUSIONS

In this paper, a framework for TO considering Sines fatigue constraints is proposed. It com-
bines the CNEM to solve the mechanical equilibrium and AL approach to solve the local min-
imum volume problem. Due to the nature of CNEM, the construction of the neighbor-based
interpolation function is purely geometric and does not involve any artificially defined parame-
ters. The AL method is able to significantly reduce the cost associated with a large number of
constraints while providing a more consistent model than aggregation techniques. The stress-
based Sines fatigue criteria is more conservative than the von Mises stress constraint. However,
the fatigue criteria adopted in this paper cannot predict the direction of potential fatigue cracks,
which will be the next step of this study.
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[19] V. Shobeiri, Topology optimization using bi-directional evolutionary structural optimiza-
tion based on the element-free Galerkin method. Engineering Optimization, 48(3), 380-
396, 2015.

[20] Z. Ullah, B. Ullah, W. Khan, Siraj-ul-Islam, Proportional topology optimisation with max-
imum entropy-based meshless method for minimum compliance and stress constrained
problems. Engineering with Computers, 38, 5541-5561, 2022.

[21] Y.D. Chen, E. Monteiro, I. Koutiri, V. Favier, Topology optimization using the constrained
natural element method. ASMO-UK 12 / ASMO-Europe 1 / ISSMO Conference on Engi-
neering Design Optimization, University of Leeds, England, 17-18 July, 2022.

[22] J. Braun, M. Sambridge, A numerical method for solving partial differential equations on
highly irregular evolving grids. Nature, 376, 655-660, 1995.

[23] N. Sukumar, B. Moran, T. Belytschko, The natural element method in solid mechanics.
International Journal for Numerical Methods in Engineering, 43, 839-887, 1998.

[24] J. Yvonnet, D. Ryckelynck, P. Lorong, F. Chinesta, A new extension of the natural el-
ement method for non-convex and discontnuous problems: the constrained natural ele-
ment method. International Journal for Numerical Methods in Enginering, 60, 1451-1474,
2004.

[25] L. Illoul, P. Lorong, On some aspects of the CNEM implementation in 3D in order to
simulate high speed machining or shearing. Computers and Structures, 89(11-12), 940-
958, 2011.

[26] R. Sibson, A brief description of natural neighbor interpolation. Interpreting Multivariate
Data, John Wiley & Sons, New York, 21-36, 1981.

[27] J.S. Chen, C.T. Wu, S. Yoon, Y. You, A stabilized conforming nodal integration for
Galerkin mesh-free methods. International Journal for Numerical Methods in Engineer-
ing, 50, 435-466, 2001.

[28] T. Zegard, G.H. Paulino, Bridging topology optimization and additive manufacturing.
Structural and Multidisciplinary Optimization, 53, 175–192, 2016.

[29] F. Wang, B.S. Lazarov, O. Sigmund, On projection methods, convergence and robust for-
mulations in topology optimization. Structural and Multidisciplinary Optimization, 43(6),
767–784, 2011.

[30] G. Sines, Metal Fatigue. McGraw Hill, New York, 145-169, 1959.

[31] F.V. Senhora, O. Giraldo-Londoño, I.F.M. Menezes, G.H. Paulino, Topology optimization
with local stress constraints: a stress aggregation-free approach. Structural and Multidis-
ciplinary Optimization, 62, 1639–1668, 2020.

[32] T.M. Mower, M.J. Long, Mechanical behavior of additive manufactured, powder-bed
laser-fused materials. Materials Science & Engineering A, 651, 198–213, 2016.

[33] A. Fatemi, R. Molaei, S. Sharifimehr, N. Phan, N. Nima Shamsaei, Multiaxial fatigue
behavior of wrought and additive manufactured Ti-6Al-4V including surface finish effect.
International Journal of Fatigue, 100, 347–366, 2017.

314



EUROGEN 2023
15th ECCOMAS Thematic Conference on

Evolutionary and Deterministic Methods for Design, Optimization and Control
N. Gauger, K. Giannakoglou, M. Papadrakakis, J. Periaux (eds.)

Chania, Crete Greece, 1-–3 June 2023

VOLUME CONSERVING BOUNDARY SMOOTHING FOR 2D
TOPOLOGY OPTIMIZATION SOLUTIONS

Nikhil Singh1 and Anupam Saxena1

1Indian Institute of Technology Kanpur
Mechanical Engg. Dept., IIT Kanpur, Kanpur, Uttar Pradesh, India, 208016

e-mail: {singhn, anupams}@iitk.ac.in

Keywords: Boundary smoothing, Topology optimization, Volume conservation, Boundary op-
timization.

Abstract. Solution in topology optimization is a connected set of discrete polygonal /polyhe-
dron finite elements. As a consequence, boundary of the continuum contains numerous notches
undesirable from a manufacturing/3D printing view point, thus motivating the development of
boundary smoothing techniques. Noting that volume constraint plays an essential role in topol-
ogy optimization, we propose a novel volume conserving boundary smoothing method for a
generic 2D tessellation. Herein, boundary smoothing is expressed as an optimization problem.
The formulation proposes a boundary smoothing function based on local angels and develops
an area constraint using the shoelace formula. Aforementioned evaluations are accompanied
by evaluation of sensitivities for both objective and constraint(s). Finally, the optimization pro-
cess takes boundary nodes as input and optimizes their location for the boundary smoothing
function subject to the constraint that the area/volume of the structure remains unchanged. The
method’s ability is demonstrated by performing boundary smoothing on solutions to many well
known topology optimization problems.
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1 INTRODUCTION

Topology optimization is a diverse design tool used to obtain optimal topologies for a vari-
ety of objectives/purposes. The method usually employs FE analysis to evaluate objectives and
thus, the final solution is expressed as a set of discrete finite elements. Boundary of the opti-
mized structure is usually defined via straight edges (for 2D cases) or plane surfaces (for 3D
cases). This leads to sharp notches, presence of which is undesirable because (a) they lead to
regions of stress concentration and (b) are inconvenient for manufacturing purposes. Addition-
ally, topology optimization involving contact requires evaluation of normals at the boundary. In
such cases, sharp notches lead to jump in normals which interferes with contact modeling, thus
necessitating smooth boundaries.
Boundary smoothing for topology optimization solutions is previously proposed in various
works. Kumar and Saxena [1] construct a fictitious contour which passes through the mid
point of boundary edges. Boundary nodes are then relocated on this contour. This, smoothing
method is implemented to evaluate objectives for intermediate topologies as well. Kumar et
al. [2] implement the same boundary smoothing technique to design contact aided compliant
mechanisms. Li et al. [3] suggest conducting boundary smoothing using a predefined table of
possible configurations material can take within a boundary element. This approach is confined
to rectangular elements. Nana et al. [4] propose reconstruction of the 3D topology solution
using bar elements. Given a topology, the method identifies a skeleton like structure, and based
on various parameters proposes constructing bars surrounding the skeleton.
Owing to the fact that volume constraint plays an important role in topology optimization,
herein, we propose a novel boundary smoothing method which conserves volume. This ap-
proach presents the smoothing process an optimization problem. Section 2 discusses various
steps involved in boundary recognition. Next, a boundary smoothing function is constructed
(section 3), minimizing which produces smoother boundaries. This is accompanied with an area
constraint which conserves volume (section 4). Eventually, independent optimization problems
are established (section 5) and solved for each void boundary. Boundary smoothing of various
topologies is conducted in section 6, followed by a discussion on effectiveness of the method.
Conclusions and future scope related to the subject are shared in section 7

2 BOUNDARY IDENTIFICATION

The first step for any boundary smoothing process is to identify the boundary nodes and ar-
range them in order of connectivity. For a 2D topology, the boundary is defined by a piece-wise
linear curve and thus each boundary node is connected to two other boundary nodes. Special
cases may arise at locations where the structure has unit cell thickness or displays point connec-
tivity. To this end, a boundary identification algorithm specific to requirements of the problem
is developed.
Topology optimization ideally outputs a 0 or 1 density within each element of the domain, pro-
viding information on weather an element/cell is void or solid respectively. Voids is structure
have independent boundaries, that is, each void creates an independent closed loop. This makes
it easier to identify and work with void boundaries instead of a single solid boundary. We iden-
tify all voids, that is, outer and inner loops and their boundaries. To ensure that all voids are
closed loops, nodes which do not lie on the solid-void interface but lie on the domain bound-
ary and are surrounded by void elements are also considered part of the void boundary. Void
boundary nodes which also lie on the domain boundary are deemed dormant boundary nodes
while those on the solid-void interface (and not on the domain boundary) are deemed as active
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Figure 1: Active (in blue) and dormant (in red) void boundary nodes

boundary nodes. Fig. 1 highlights void boundary nodes for the corresponding topology. Active
and dormant boundary nodes are colored using blue and red respectively. Note that, because
the boundary is defined using piece-wise linear segments and nodes, and voids are independent
closed loops, each void is an n sided polygon where n is the number of rectilinear edges along
its boundary. Various steps/stages involved in identifying void boundaries are discussed below.

Obtaining the required boundary information has two steps: The first step is to identify nodes
at the solid-void interface and those at the domain boundary which are surrounded by void ele-
ments. This information can be extracted using density distribution and the connectivity matrix
used in performing topology optimization. The second step involves identifying independent
loops. We commence with a random node, i, and identify neighboring nodes which also lie on
the void boundary. This gives two nodes, h and j. One of these nodes is picked at random,
say j, and the same process is repeated on this node, which again leads to two nodes one of
which is node i. As node i is already identified, the other node is chosen and the same process
is repeated until one circles back to node i. This provides boundary nodes for one loop, ordered
according to connectivity. The same process is repeated until all boundary nodes are accounted
for.
Once all the void boundaries, i.e., inner and outer loops are obtained, we construct an indepen-

dent optimization problem for each void. These problems optimize location of nodes to give
smoother boundaries. A constraint is imposed to ensure volume conservation. The construc-
tion of objective function (section 3) and constraint (section 4) for the optimization problem is
discussed next.

3 BOUNDARY SMOOTHING FUNCTION

Solutions in 2D topology optimization is a collection of discrete polygons, with boundaries
of the final structure defined by edges of these polygons. Due to the discreteness involved with
the boundaries, an idea of smoothness at a boundary point, needs to be established. Correspond-
ingly, a measure for smoothness at a point is also required. This section focuses on establish-
ing the required definitions and measures, and implementing them to construct the Boundary
Smoothing Function (BSF) which when minimized smoothens the structural boundary. Addi-
tionally, some properties of the aforementioned BSF are discussed.
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3.1 Smoothness at a point

A measure for smoothness at a boundary node is required to construct the Boundary Smooth-
ing Function (BSF). A 2D curve is said to be smooth at a point if the left and right derivatives
at that point are equal. As the boundary is piece-wise discrete, the left and right derivatives
at a node are slopes of the edges connected to that node (see Fig. 2). For construction of the
Boundary Smoothing Function (BSF), we look at local properties of edges and angles at each
boundary node.

Fig. 3(a) and (b) demonstrate two cases: In both, slope of the lines intersecting at point

Figure 2: Slope at a point

(a) (b)

Figure 3: Different local angles for lines of same slope

Xi ≡ (xi, yi) is the same but from observation, the connection in case (a) leads to a notch while
that in (b) leads to a smoother curve. Thus, a BSF constructed using only the slopes of lines
will be unable to distinguish between the two scenarios. Therefore, we utilize the local angle
between the two boundary edges to construct the BSF.
The boundary is considered smoother as the local angle approaches π radians. Thus, smooth-
ness at a point is measured via the function

Si = (1 + cos θi)
2 (1)

where θi is the local angle at point Xi. Note that, Si is minimum when θi = π and maximum for
θi = 0. Additionally, Si gives different values for the two cases described above and therefore,
is able to distinguish between the two. We evaluate cos θi using the following expression,

cos θi =
(Xi+1 −Xi) · (Xi−1 −Xi)

∥Xi+1 −Xi∥ × ∥Xi−1 −Xi∥
. (2)

Employing the above measure of smoothness the BSF is constructed as,

BSF =
n∑

i=1

(1 + cos θi)
2 (3)

where n is the number of active boundary nodes associated to a given void.

3.2 Equal angle property of BSF

Herein, we justify the choice of BSF by showing that, for a set of n points, which when
connected in order forming an n-sided polygon, the BSF is minimized when all local angles
are equal. This shows that, in an unconstrained system, minimizing BSF gives the closest
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approximation of a closed, smooth curve one can achieve using n discrete points. Let {N} be a
set of n ordered nodes such that connecting them in the ordered manner gives a closed polygon.
The optimization function for this system is,

Minimize F (θi) = BSF ≡
∑
i∈{N}

(1 + cos θi)
2. (4)

As the n nodes when connected form a polygon,∑
i∈{N}

θi = (n− 2)π. (5)

This gives,

θk = (n− 2)π −
∑
i∈{N}
i̸=k

θi (6)

implying the last angle is a function of its n − 1 predecessors. Thus, the objective function is
modified to,

Minimize F (θ) =
∑
i∈{N}
i̸=k

(1 + cos θi)
2 + (1 + cos θk)

2 (7)

where θ is the vector of local angles, θi, i ∈ {N} | i ̸= k, and expression for θk is given in eqn.
6. To find the local minima, we evaluate gradients of F (θ) and equate it to 0. This gives,

∂F (θ)

∂θi
= 2(1 + cos θi) sin θi − 2(1 + cos θk) sin θk = 0

=⇒ (1 + cos θi) sin θi = (1 + cos θk) sin θk ∀ i ∈ {N} | i ̸= k (8)

This implies, (1 + cos θi) sin θi = c ∀ i ∈ {N} (9)

where c is a constant. This allows for two values θi in the interval (0, π). Thus, the local angles
should satisfy eqns. 5 and 9. This is only possible when

θi =
(n− 2)π

n
∀ i ∈ {N}. (10)

Thus, BSF is minimized when all local angles in the polygon are equal. Constraint evaluation
is discussed next.

4 AREA CONSTRAINT

This section constructs an area constraint to ensure that volume of the continuum remains
conserved through the boundary smoothing process. As the domain is divided in solid and void
regions,

AΩ = As + Av (11)
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where AΩ is the area of design domain, As is the area of solid region and Av is the area covered
by the void region. As will be discussed ahead, the smoothing process does not alter the loca-
tion of domain boundary nodes, thus AΩ remains constant. Therefore, conserving area of the
void region ensures area conservation for the solid region.
As discussed in section 2, boundary smoothing for each void is done independently. We there-
fore conserve the volume of each void. Utilizing the fact that each void is a polygon, we imple-
ment the shoelace formula to evaluate the area enclosed within a void. The shoelace formula
evaluates the area of a polygon as,

A =
1

2

{∣∣∣∣x1 y1
x2 y2

∣∣∣∣+ ∣∣∣∣x2 y2
x3 y3

∣∣∣∣+ . . .

∣∣∣∣ xi yi
xi+1 yi+1

∣∣∣∣+ . . .

∣∣∣∣xn yn
x1 y1

∣∣∣∣} (12)

where (xi, yi) are the coordinates of vertex i and vertices are numbered in order of connectivity,
that is, vertex i is connected to vertex i−1 and i+1. The method for obtaining ordered vertices
for void is discussed in section 2. The area constraint is given as,

Ak − Ak
v = 0 (13)

where Ak
v is the original area of void k and Ak is the area of void at any given optimization

iteration. Both Ak
v and Ak are evaluated using Eqn. 12.

5 PROBLEM FORMULATION AND SENSITIVITY ANALYSIS

This section develops the optimization formulation for boundary smoothing. As stated in
section 2, an independent optimization problem is solved for boundary smoothing of each void.
The smoothing problem for a void is formulated as; optimize location of active boundary nodes
to

Minimize F (θ) =
∑

i∈{Nk}

(1 + cos θi)
2 (14)

such that Ak − Ak
v = 0

and x0i − a ≤ xi ≤ x0i + a

y0i − a ≤ yi ≤ y0i + a

where cos θi is evaluated from node locations as in eqn. 2, {Nk} is the set of active bound-
ary nodes for the kth void, Ak and Ak

v are the current and original area of voids respectively,
(x0i, y0i) and (xi, yi) are the original and current location of node i, and a is the edge length of
the square region within which the node is bound.
The optimization problem is solved using a gradient based method. Sensitivity analysis of the
objective and constraint are conducted as follows.

5.1 Objective and constraint gradients

Using eqn. 2 and 14, the objective gradient with respect to design variables xj and yj ,
j ∈ {Nk} are evaluated as,

∂F (θ)

∂xj

=
∑

i∈{Nk}

2(1 + cos θi)
∂ cos θi
∂xj

(15)

and
∂F (θ)

∂yj
=

∑
i∈{Nk}

2(1 + cos θi)
∂ cos θi
∂yj

respectively.
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As the nodes are numbered in ordered manner, nodes adjacent to node j are numbered j + 1
and j − 1, thus,

∂ cos θi
∂xj

= 0 and
∂ cos θi
∂yj

= 0 for i ∈ {Nk} | i ̸= {j − 1, j, j + 1}. (16)

Substituting eqn. 16 into eqn. 15 gives,

∂F (θ)

∂xj

=

j+1∑
i=j−1

2(1 + cos θi)
∂ cos θi
∂xj

(17)

and
∂F (θ)

∂yj
=

j+1∑
i=j−1

2(1 + cos θi)
∂ cos θi
∂yj

where
∂ cos θi
∂xi−1

=
(xi+1 − xi)

d(i+1,i)d(i−1,i)

− (xi−1 − xi)

d2(i−1,i)

cos θi,

∂ cos θi
∂xi+1

=
(xi−1 − xi)

d(i+1,i)d(i−1,i)

− (xi+1 − xi)

d2(i+1,i)

cos θi (18)

and
∂ cos θi
∂xi

= −
[
∂ cos θi
∂xi+1

+
∂ cos θi
∂xi−1

]
where d(j,i) is the distance between (xj, yj) and (xi, yi) given by

d(j,i) =
√

(xj − xi)2 + (yj − yi)2.

Expressions for
∂ cos θi
∂yi−1

,
∂ cos θi
∂yi

and
∂ cos θi
∂yi+1

can be evaluated in a similar fashion.

Next we look at the constraint gradient. Gradients for the equality constraint in eqn. 14 can be
evaluated using the formula in eqn. 12 as,

∂Ak

∂xj

=
yj+1 − yj−1

2
and

∂Ak

∂yj
=

xj+1 − xj−1

2
. (19)

Note that Ak
v is the initial area of the void and thus, is a constant. Therefore, it does not partici-

pate in gradient evaluation. Boundary smoothing can be performed using the above formulation.

6 EXAMPLES AND DISCUSSION

We demonstrate boundary smoothing, using the above formulation, on solutions to some
well known topology optimization problems. Fig. 4c, 5c, 6c present boundary smoothed for
solutions of the cantilever beam, mid-load beam and displacement inverter problems presented
in Fig. 4a, 5a, 6a respectively. Fig. 4b, 5b, 6b show the initial and final void boundaries. We
highlight the initial and final void boundaries as blue and red respectively, while boundary of
the design domain is highlighted by dashed black lines. Solutions to the topology optimization
problems are obtained using the nFP method proposed in Singh and Saxena[5]. As the objective
is to demonstrate intricacies of boundary smoothing, topology optimization is conducted on a
rather course mesh.
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(a) Original solution (b) Initial and final boundaries (c) Smoothed solution

Figure 4: Boundary smoothing on the solution for Cantilever beam problem

(a) Original solution (b) Initial and final boundaries (c) Smoothed solution

Figure 5: Boundary smoothing on the solution for Mid-load beam problem

(a) Original solution (b) Initial and final boundaries (c) Smoothed solution

Figure 6: Boundary smoothing on the solution for displacement inverter problem

Observing the smoothing of solution in Fig. 4a, it is realized that, bottom edge of the
void which is initially straight, is now curved which from a manufacturing point of view is
undesirable. This, arch in the void boundary is a consequence of the area constraint. Such
undesirable consequence of the smoothing process can be avoided by excluding the nodes on
straight edge from the optimization process, that is, those nodes can be fixed by excluding them
from the set of design variables. Alternatively, bounds on nodal coordinates can be tightened.
Thus, a method for identification of desirable and undesirable features in a structure is required,
and is left for a future work. Another approach to resolve the issue would be to propose an
alternate BSF which does not interfere with straight edges. On the other hand, solution in Fig.
6c shows that the smoothing process counteracts the local thinning in Fig. 6a. The objective
attempts to reduce sharp changes in gradients at the points of local thinning thus adding material
to produce a smoother boundary. Such alterations in boundary are considered desirable from a
manufacturing point of view.
The method as described above is confined to 2D topologies. Developing an extension of the
method for a generic case of 3D topologies is not apparent. This is because, the above method
depends on local angles which is hard to define for boundary surfaces. Additionally, the method
requires nodes be stored in the order of connectivity which in a 3D case is not apparent as each
node on the surface is connected to more than 2 nodes. Thus, a different approach needs to be
developed, to conduct volume conserving boundary smoothing in 3D.
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7 CONCLUSION

A volume conserving boundary smoothing method for 2D topology optimized solutions is
established. Boundary smoothing is presented as an independent optimization problem for each
void, wherein, objective is a function of local angles at the edges and an equality constraint
is established to conserve volume. Effectiveness of the method is demonstrated via conduct-
ing boundary smoothing of solutions to some well known problems. The method is shown to
counteract local thinning but is also shown to alter some straight edges into curves. Thus, the
approach presents desirable, as well as, undesirable behavior. The presented methodology even
though relevant and effective, has some drawbacks and presents scope of further improvement.

REFERENCES

[1] Kumar Prabhat, and Anupam Saxena, On topology optimization with embedded boundary
resolution and smoothing. Structural and Multidisciplinary Optimization 52 (2015): 1135-
1159.

[2] Kumar, Prabhat, Roger A. Sauer, and Anupam Saxena. On topology optimization of large
deformation contact-aided shape morphing compliant mechanisms. Mechanism and Ma-
chine Theory 156 (2021): 104135.

[3] Li, Zhi, et al. Smoothing topology optimization results using pre-built lookup tables. Ad-
vances in Engineering Software 173 (2022): 103204.

[4] Nana, Alexandre, Jean-Christophe Cuillière, and Vincent Francois. Automatic reconstruc-
tion of beam structures from 3D topology optimization results. Computers and Structures
189 (2017): 62-82.

[5] Singh, Nikhil, and Anupam Saxena. Normalized Field Product method for Topology Op-
timization. arXiv preprint arXiv:2208.10879 (2022).

323



EUROGEN 2023 
15th ECCOMAS Thematic Conference on 

Evolutionary and Deterministic Methods for Design, Optimization and Control 
N. Gauger, K. Giannakoglou, M. Papadrakakis, J. Periaux (eds.) 

Chania, Crete Greece, 1–3 June 2023 

A MULTI-SCALE TOPOLOGY OPTIMIZATION APPROACH WITH 
IMPLICIT FUNCTION-BASED MICRO-STRUCTURES 

Andrea Nale1*, Andrea Chiozzi2

1 Department of Architecture 
University of Ferrara 

Via della Ghiara, 36 - 44121 Ferrara, Italy 
andrea.nale@unife.it 

2 Department of Environmental and Prevention Sciences 
University of Ferrara 

C.so Ercole I d'Este, 32 - 44121 Ferrara, Italy 
andrea.chiozzi@unife.it 

Abstract 

Topology optimization is a design method that afford an optimal layout with the minimization 
of a function, which describe a functional aspect, under prescribed constraints. The most 
common problem analysed in topology optimization is the compliance minimization, i.e. max-
imization of stiffness, under prescribed volume constraint. Here, we propose a multiscale ap-
proach with multi-material formulation where several microstructures, which differ in terms 
of material and topology, are generated using an implicit function. This approach, based on 
the theory of homogenization, allows to account for different microstructures and enables to 
obtain functionally graded structures. Several numerical examples are shown to illustrate the 
main features and advantages of the proposed multi-scale topology optimization approach. 

Keywords: topology optimization, multi-scale approach, implicit function method 
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1 INTRODUCTION 
Topology optimization has gained increasing interest in various fields of engineering over the 
last decade. Despite structural optimization being developed throughout the 20th [1] and 21st 
[2] centuries, its practical implementation was constrained to theory due to difficulties in 
manufacturing the optimized layout. However, additive manufacturing has provided an oppor-
tunity to overcome the limitations of conventional manufacturing techniques. Therefore, in 
civil engineering, topology optimization has become a valuable tool to find and explore new 
solutions. This computational tool finds his power in the combination of a typical solution 
method used in the field of engineer, i.e. the Finite Element Method (FEM), which enables 
the attainment of a material distribution within a domain [3]. The optimal layout is deter-
mined by topology optimization with the distribution of holes and links in the structure by 
removing and adding material in the defined domain, with supports and loads, to satisfy spe-
cific constraints. In this paper, the proposed topology optimization uses a continuous ap-
proach, where a material model allows to intermediate values of a specific property, e.g. 
density of material, using a continuous parameter, which is the design variable, that deter-
mines the distribution of material and void. The most common material model adopted in to-
pology optimization is the so-called density methods [3]. In particular, the traditional SIMP 
(Solid Isotropic Material with Penalization) model is widely used for its rather simple ap-
proach giving quality results. In this approach, a weighting function operates on the variables 
ρ  inside a radius rmin, which shows the local nature of this operation. This approach is called 
also two-field SIMP, because the optimization algorithm uses both a design variable and a 
weighted density variable ρ . An evolution of the SIMP method is given by the homogeniza-
tion-based method [4], which recently received widespread interest due to the complexity, the 
scale, and connectivity of microstructural geometries. Indeed, these issues represented a key 
limitation for decades in favor of the solid isotropic material interpolation. The development 
of new technologies, i.e. additive manufacturing, revive this approach enabling the manifac-
turing of multi-material structure and hierarchical structures, e.g. periodic microstructures 
structures [5]. The multiscale structures, which are composed by microstructures with differ-
ent geometries giving mechanical properties that vary spatially, recently received a great at-
tention for the comparison to many natural structures and materials, such as bone and bamboo 
[6] [7], achieving compelling functionalities [8] that, in a general sense, promise superior per-
formances. This contribution aims to outline a three-dimensional topology optimization ap-
proach for large-scale additive manufacturing to incorporates different microstructures. The 
structure of this paper is shown as follows. Section 2 presents the methodology, paying atten-
tion of the formulation proposed, the sensitivity analysis, the update scheme and multiscale 
approach adopted; Section 3 presents some examples of microstructures generated with the 
implicit function method and the conceptual idea of the approach. Finally in Section 4 conclu-
sions and the future perspectives are given. 

2 METHODOLOGY 
The proposed topology optimization is a homogenization-based multi-scale approach with a 
multi-material formulation for a volume-constrained compliance minimization. The discrete 
problem statement for an elastic body is described as: 
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where f is the objective function which is minimized under jg  constraints.  
In the proposed approach the objective function f  refers to the compliance, i.e. maximization 
of stiffness matrix, which is defined by multiplying the vector of applied loads F  with the 
element displacements U . While the constraint is represented by the function jg , j ,...,K1= , 
represent the volume for each volume constrain. The volume constraint restricts the selection 
of candidate materials in any specific subregion of the domain with the sets jε  and jG  that 
represent, respectively, the element and material indices related to constraint j. Moreover, Vl , 
l ,...,N=1 , represents the volume, V lim y=  is the volume interpolation and the constraint is 
given by the volume limits jv . 
The microstructure properties are embedded by the material volume liv , i ,...m1=  for each 
candidate material, and the local stiffness matrix lk . In particular, the material volume 

li li iˆv y v=  incorporates the material porosity, through the unit cell volume iv̂ , while liy  assigns 
the presence of an element and, if present, designates the candidate material to each of the N 
element centroids that make up the discretized domain.Ω . 
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l M l li lj liji j i

m w w ,l ,...,N0

1
1

1 1γ
=

= ≠

′= = Π − =∑k w k  (2) 

 
where Mm  is interpolation function that penalizes the mixing of materials [9] and depends on 
the penalized element densities liw , li

0k  is the element stiffness matrix and γ  is the mixing 
penalty parameter. The penalized element density is defined as: 
 

 ( ) p
li W li liw m y y= =  (3) 

 
with p a penalty parameter to penalize intermediate densities. 
The local stiffness matrix is computed as: 
 

 ( )
l

T H
li j i k d0

Ω
= ∫k B D B x  (4) 

 
where B  describes the strain-displacement matrix of shape function derivates, lΩ  is the do-
main of element l and H

iD  is the homogenized material elasticity matrix, represented in Voigt 
notation, used as input for each material 
The candidate material is determined by the implicit function-based modelling approach [10]. 
Indeed, this method is particularly useful to described porous structures by using implicit 
functions. Indeed, a function of cosine and sine, e.g. Fourier series, allows to defined a field 
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( )φ x , which is defined by the points ∈Ωx  of a domain Ω⊂ 3
 , and applying a threshold 

levelsetφ  is possible to subdivided Ω  into two subspaces: 

 if  inside
 if  on the boundary
 if  outside

levelset

levelset

levelset

( )
φ

φ φ
φ

<
= =
>

x
x x

x
(5) 

and assigning to each subspace, according to a discrete level set function, the final solid-void 
assignment of each point: 

 if  
 otherwise

l l levelset
l l

( )
( )

φ φ
δ

≥
= 


1

0

x
x (6) 

The computational homogenization [11] is carried out using a hexahedral mesh with 100 x 
100 x 100 elements. This method allows us to handle any type of material and consider its 
effective macroscopic properties in the optimization process. 
A gradient-based method is employed to solve the compliance minimization stated as Eq. (1). 
It involves the objective and constraint sensitivities with respect to the design variables. These 
are computed as following: 

i i

i i i i

f f ,i ,...,m1
∂ ∂∂ ∂

= =
∂ ∂ ∂ ∂

y w
z z y w (7) 

j ji i

i i i i

g g
, j ,...,K

z
1

∂ ∂∂ ∂
= =

∂ ∂ ∂ ∂
y V
z y V

(8) 

and the individual contributes are: 

Ti

i

∂
=

∂
y P
z (9) 

 if  and 
        otherwise

p
kjT li

li li li

w py , l k j if ,
w w y ,

1

0

−∂  = =∂ ∂
= − = ∂ ∂ ∂ 

KU U (10) 

 if  and A
A   otherwise

j

j kj il

li l lil

ˆg v v , l k j i
,

v y ,0ε∈

∂ ∂ = =
= = ∂ ∂ ∑ (11) 

( ) ( )  if 

otherwise

mm m

lj li lp lr lpj rk pj i r pp i r i
li

w w w , l k

w
,

0 0

1 1
1

1 1

0

γ γ γ
= =

=≠ ≠
≠ ≠


Π − − Π − =∂ = ∂ 



∑k kk . (12) 
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where P  is the density filter matrix. 

The sensitivities 
i

f∂
∂z

 and j

i

g
z

∂

∂
 allow the implementation of the Zhang-Paulino-Ramos Jr. 

(ZPR) update scheme [12], where a series of convex approximate subproblem is solved using 
the Lagrange duality. The computation of these sensitivities allows to determine the candidate 
design variable: 

( )
N

li li lk ki
k

z B P z
1

0
1

1

αρ ρ∗ +

=

 = + − 
 
∑  (13) 

where: 

k

k

li
li

j
j

li

f
z

B
g
z

λ

=

=

∂
∂

= −
∂
∂

Z Z

Z Z

. (14) 

and he Langrange multipliers jλ , at k-iteration, is evaluated solving with the bisection method 
the equation: 

( ) ( ) ( )( )
j

Tjk k k
j li li li j li

i M li

g
g z z z z

z
λ

∈

∂
+ − =

∂∑ 0 . (15) 

The candidate design variable is accepted if respect the following box constraints: 

( ) ( )max minli li li liz ,z M ,z ,z M0 0ρ ρ− += − = +  (16) 

where ρ  and ρ  are respectively the maximum and minimum value allowable and M the 
move limit. So, the design variable at the new iteration is expressed as: 

, 
, 
, otherwise

li li li
new
li li li li

li

z z z
z z z z

z

+ ∗ +

− ∗ +

∗

 ≥


= ≤



. (17) 

3 RESULTS 
The candidate materials produced through the implicit function method can vary by adjusting 
the weighted sum of cosine and sine functions. Some examples have been showed by Yang et. 
al. [13] and fabricated polymeric porous materials with stereolithography technique. Here, it 
is reported some cells [14] with unitary edge boundary (a=b=c=1) generated using the im-
plicit-function model approach:  
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Morphology Implicit Function Model 

Primitive ( ) yx z
nn ncos x cos y cos z

a b c
ππ π

φ
    = + +    

    

22 2x
 

  

Gyroid 

( )

           

            

x x

y y

z z

n n
cos x sin y

a a
n n

cos y sin z
b b

n ncos z sin x
c c

π π
φ

π π

π π

   = +   
   
   

+   
   
   
   
   

2 2

2 2

2 2

x  

  
  x y zn n n= = =1 x y zn n n= = = 2  

 
Table 1: Periodic microstructures generated with implicit function method 

 
The material properties, e.g. stiffness elasticity tensor iD , for topology optimization have 
been defined through homogenization [11]: 

 
Isotropic Primitive Gyroid  

     

 

    
 

Table 2: Elastic surfaces that indicate the tensile modulus direction dependence. 
 
The material transition between cells is allowed with an interpolation function of the phase 
fields associate with each candidate material according to: 
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( )

( ) ( )

( )

/
m min l i

li li

l l /
m min l i
i

d ,S
max ,

R

d ,S
max ,

R

φ

φ

φ
φ

=

=

 
− 

  =
 

− 
  

∑

∑

1 2

0

1

1 2

1

0 1

0 1

x
x

x
x

(18) 

where Rφ  is the distance of the interpolation, ( )min l id ,Sx  is minimum distance between a ge-

neric point lx  the generic set iS , i ,...,m=1 , which contains all point il S∈ , and ( )li lφ0 x  rep-
resent the discrete version of the candidate material m phase field. 
The presented method is currently being implemented for a 3D cantilever beam with a unit 
load P applied vertically at the tip and boundary fixed at the extreme (blue regions in Figure 
1). The entire domain will be subject to volume constraints, with each constraint controlling a 
single material, to prevent any one microstructure from dominating the others. 

Figure 1: Cantilever beam domain and boundary conditions 

The proposed approach has been applied for an isotropic material: 

Figure 2: Cantilever beam optimized with isotropic material 

In the same way, this method is ongoing to be applied for multiple periodic microstructures. It 
is expected to yield an optimized layout that share some geometric similarities to those seen in 
isotropic materials. In the following image, it is reported a conceptual depiction of the opti-
mized layout obtained using the proposed methodology: 
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Figure 3: Conceptual representation of the result attended by the proposed method. The optimized layout in (A) 
with the microstructures (B) and (C), respectively Primitive and Gyroid cell. In (D) the cell transition with an 
interpolation function Eq. (18) on the phase fields of cells. 

4 CONCLUSIONS 
This work represents the starting point, whose objective is the topological optimization of 
structures with predefined cells structures to produce hierarchical civil structure components 
through large-scale additive manufacturing techniques. The next phases of this work will fo-
cus on developing the proposed optimization method and extending it with more appropriate 
formulation that consider the material features to suit civil engineering components, as well as 
on post-processing the structures for manufacturing purposes. 
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SE–701 82 Örebro, Sweden

e-mail: niclas.stromberg@oru.se

Keywords: A game approach, Multi-scale topology optimization, TPMS-based lattices

Abstract. In this work, we set up a game of minimizing static (player 1) and dynamic (player

2) compliance, respectively, by using a multi-scale topology optimization framework for TPMS-

based lattice structures. Player 1 will find the optimal macro layout by minimizing the static

compliance for a given micro layout delivered from player 2, and player 2 will find the op-

timal micro layout (grading of the TPMS-based lattice structure) by minimizing the dynamic

compliance for a given macro layout from player 1. The two multi-scale topology optimiza-

tion formulations are obtained by using two density variables in each finite element. The first

variable is the standard topology optimization macro density variable, which defines if the ele-

ment should be treated as a void or contain the graded lattice structure by letting this variable

be governed by the rational approximation of material properties (RAMP) model. The second

variable is the local relative lattice density, and it sets the effective orthotropic elastic properties

of the element, which in turn are obtained by using numerical homogenization of representative

volume elements of the TPMS-based lattice structure of interest. Player 1 follows the standard

compliance problem formulated in the first density variable using graded lattice structures from

player 2. Furthermore, player 2 grades the lattice structure by solving the dynamic compliance

problem for a harmonic load formulated in the second variable for a macro-layout presented

by player 1. The game is implemented for three-dimensional problems and the results are pre-

sented as STL-files using implicit-based geometry and marching cubes. It is demonstrated that

the proposed game generates designs that have good performance for both the static and har-

monic load cases and efficiently can avoid resonance at the frequencies of the harmonic loads.

333



N. Strömberg

1 INTRODUCTION

Advances in additive manufacturing make it possible to manufacture complex cellular struc-

tures with high quality [1]. In such manner, new ultra-lightweight multi-functional designs that

are both strong and stiff can be manufactured, similar to ultra-lightweight designs found in na-

ture such as e.g. bird skeletons [2]. One class of cellular structure that has proven suitable for

this is the triply periodic minimal surface (TPMS)-based lattice structures [3], where the Gyroid

structure probably is the most well-known. The TPMS-based surfaces have zero mean curvature

at every point and are formulated as implicit-based surfaces. Two types of TPMS-based struc-

tures can be set up using Boolean operators: the shell-based and the frame-based, in fact one

could even set up Honeycomb-based alternatives. An extensive study of the mechanical prop-

erties of several TPMS-based lattices can be found in the work by Maskery et al. [4]. Recently,

a multi-scale topology optimization framework for finding optimal macro layouts with optimal

grading of these TPMS-based structures was proposed with transversely isotropic elastic bulk

properties [5]. Frame- and shell-based Gyroid, G-prime and Schwarz-D structures were imple-

mented by establishing elastic properties as function of relative lattice density using numerical

homogenization of representative volume elements of the TPMS-based structures [6].

If the frequency of a harmonic load is close to any of the natural frequencies of a component,

then the phenomena of resonance occurs. Therefore, in the design of lightweight components,

natural frequencies close to the driving frequency of the external load must be avoided. A design

possibility to accomplish this could be to utilize TPMS-based structures and grade these in order

to tune the natural frequencies such that resonance is avoided. This is the topic of the following

paper. We suggest to set up a non-cooperative two players game, where one of the player

minimize the static compliance by finding the optimal macro-layout for a given design of local

graded TPMS-based lattice structures and the other player minimize the dynamic compliance

by finding the optimal local grading of the TPMS-based lattice structure for a given design

of the macro-layout. The game is formulated by using the multi-scale topology optimization

framework for TMPS-based lattice structures presented recently in [5].

The outline of the paper is the following: in the next section the governing equations needed

for the multi-scale topology optimization formulation are presented, in section 3 the strategies

for the multi-scale players are formulated as two separate topology optimization problems, in

section 4 the treatment of the multi-scale game using a Gauss-Seidel approach is presented, and,

finally, some concluding remarks are given.

2 GOVERNING EQUATIONS

Let us consider a non-homogenous linear orthotropic elastic body with fixed displacements

and prescribed external forces, which is discretized with linear finite elements. Two density

variables, γe and ρe, are introduce for each element e; γe is the local relative density of lattice in

the element and ρe is a standard macro density variable defining if the element should be treated

as a void or filled with lattice structure.

The effective elastic properties of each element e are obtained by numerical homogenization

of representative volume elements (RVEs) of the TPMS-based lattice structure of interest such
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that the effective elasticity matrix in Voigt notation is given by

Ce = Ce(γe) =

















f11c11 f21c21 f31c31 0 0 0
f21c21 f22c11 f32c31 0 0 0
f31c31 f32c31 f33c33 0 0 0
0 0 0 f44c44 0 0
0 0 0 0 f55c44 0
0 0 0 0 0 f66c66

















, (1)

where fij = fij(γe) are material interpolation (regression) laws as function of the relative lattice

density 0 ≤ lb ≤ γe ≤ ub ≤ 1 of element e, where lb and ub are prescribed lower and upper

limits on γe, respectively. Furthermore, cij in (1) are the elastic properties of the bulk material

of the lattice structure, which are assumed to be governed by transversely isotropic elasticity,

i.e. Ce(1)
−1 =

















1/E −ν/E −ν13/E 0 0 0
−ν/E 1/E −ν13/E 0 0 0
−ν13/E −ν13/E 1/E33 0 0 0

0 0 0 1/G23 0 0
0 0 0 0 1/G23 0
0 0 0 0 0 2(1 + ν)/E

















, (2)

where E and E33 are Young’s moduli, ν and ν13 are Poisson’s ratios and G23 is the out-of-plane

shear moduli.

The corresponding local effective finite element stiffness matrix for element e is denoted by

ke = ke(γe). (3)

In the global assembly procedure, the RAMP model is utilized in order to define if the finite

element e should be considered to be a void or filled with lattice structure. Thus, the global

stiffness matrix is generated by

K = K(ρ,γ) =
⋂

e

ρe
1 + n(1− ρe)

ke(γe), (4)

where, ρ = {ρe}, γ = {γe},
⋂

represents an assembly operator, n is the RAMP factor and

ǫ ≤ ρe ≤ 1 is the relative macro density of lattice structure for element e, where ǫ is a small

number ǫ in order to avoid singular stiffness matrices.

The global mass matrix is given by

M = M(ρ,γ) =
⋂

e

ρeγeme, (5)

where me is local element mass matrix for an element e with ρe = γe = 1.

The total volume of bulk material generated in the assembly procedure is given by

V bulk = V bulk(ρ,γ) =
∑

e

ρeγeVe, (6)
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where Ve represents the total volume of each element e when ρe = γe = 1. By using (6), the

following different volume measures can be identified:

V design = V bulk(1, 1),

V macro = V macro(ρ) = V bulk(ρ, 1),

V lattice = V lattice(γ) = V bulk(1,γ),

(7)

where V design is the total volume of the design domain, V macro is the total volume of the macro

layout filled with lattice structure, V lattice is the total volume of lattice in the design domain and

1 is a vector of ones. The volume of lattice in the macro layout of lattice structure V macro is

given by

V lattice
macro = V lattice − (V design − V macro)lb, (8)

which will converge towards the volume of bulk material V bulk, because ρe = ǫ in the void

region.

3 THE MULTI-SCALE PLAYERS

In this section, the two players with their strategies for the non-cooperative game presented

in the next section are defined. The first player minimize the static compliance cs by finding

the optimal macro-layout ρ∗, and the second player minimize the dynamic compliance cd by

finding the optimal local grading of the TPMS-based lattice γ∗.

Thus, the two players’ strategies, P1 and P2, are defined by the following multi-scale topol-

ogy optimization problems:

P1



























Given γ∗:

min
(ρ,d)

cs = F Td

s.t.







K(ρ,γ∗)d = F ,

V macro(ρ) ≤ V̂ macro,
ǫ1 ≤ ρ ≤ 1,

(9)

P2































Given ρ∗:

min
(γ,u)

cd =
1

2

(

F Tu
)2

s.t.







(−Ω2M(ρ∗,γ) +K(ρ∗,γ))u = F ,

V lattice(γ) ≤ V̂ lattice,
lb1 ≤ γ ≤ ub1,

(10)

where d and u are the displacement vectors, F contains the external forces, Kd = F is the

static equilibrium equation, −Ω2Mu +Ku = F is the dynamic equilibrium equation, where

Ω is the angular frequency for the harmonic load F sin(Ωt), and V̂ macro and V̂ lattice are the upper

limits on the macro layout volume and the lattice volume, respectively.

The players’ strategies in (9) and (10) are solved using sequential linear programming (SLP)

using the sensitivities and filters presented below. The sensitivities of the compliances cs and

cd, using the adjoint method, are given by

sse =
∂cs
∂ρe

= −dT ∂K

∂ρe
d, (11)
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sde =
∂cd
∂γe

= −
(

F Tu
)

uT

(

−Ω2∂M

∂γe
+

∂K

∂γe

)

u, (12)

where
∂K

∂ρe
=

n + 1

(1 + n(1− ρe))2
ke(γe), (13)

∂M

∂γe
= ρeme, (14)

and
∂K

∂γe
=

ρe
1 + n(1− ρe)

∂ke

∂γe
, (15)

where ∂fij/∂γe are needed in (15).

The sensitivities of the volume V macro and V lattice are, of course,

∂V macro

∂ρe
=

∂V lattice

∂γe
= Ve. (16)

The sensitivities are treated by a density filter for both ρe and γe [7], and, in addition, ρe is

passing a smooth Heaviside function [8]. Thus, ρe is treated by

ρfilt
e =

nel
∑

g=1

δgVgρg

nel
∑

f=1

δfVf

, (17)

where nel is the number of finite elements,

δf = δf(e) = (rmin − dist(e, f))+ , (18)

dist(e, f) denotes the distance between the center of element e and f , and rmin is the filter

radius, which is set to 1.5 times the characteristic length of the finite elements in the numerical

examples. (17) is also applied on γe. Furthermore,

ρheav
e =

tanh(βη) + tanh(β(ρfilt
e − η))

tanh(βη) + tanh(β(1− η))
, (19)

where η defines the threshold and β sets the slope of the smooth Heaviside filter. In the nu-

merical examples, η = 0.5, β is ramped from 1 to 20, and the filter is activated after 100 SLP

iterations.

4 THE MULTI-SCALE GAME

The non-cooperative game is to find an equilibrium point (ρ∗,γ∗) that is optimal simultane-

ously for the players P1 and P2 in (9) and (10). In this work, we try to find such equilibrium

points by applying a sequential Gauss-Seidel approach with sequential linear programming.

A recent paper on solving a two-player game in topology optimization using a Gauss-Seidel

approach is given in [9].
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The corresponding LP-problems for player P1 and player P2 read

P1































Given γk:

min
ρ

∑

e

sseρe

s.t.







∑

e

Veρe ≤ V̂ macro,

ρk − δρ ≤ ρ ≤ ρk + δρ,

(20)

P2































Given ρk:

min
γ

∑

e

sdeγe

s.t.







∑

e

Veγe ≤ V̂ lattice,

γk − δγ ≤ γ ≤ γk + δγ ,

(21)

where δρ and δγ contain the move limits.

Figure 1: The plots show the optimal macro-layout with the optimal graded lattice density field. Left: the driving

frequency is set to zero, right: the driving frequency of the harmonic load is 2910.5 Hz, which corresponds to the

fifth natural frequency of the left design.

The sequential Gauss-Seidel algorithm reads

Set k = 0 and guess an initial state (ρ0,γ0) and then solve the following steps

sequential until convergence:

1. Let player 1 solve (20), and let ρk+1 be equal to the optimal solution.

2. Set ρk = ρk+1, let player 2 solve (21), and let γk+1 be equal to the optimal

solution.

3. Let k=k+1 and go to step 1.

After a certain number of loops the algorithm is halted and the convergence is checked. If a

solution is believed to be close to an equilibrium point, then algorithm is stopped. Otherwise,

the algorithm is restarted from (ρk,γk) and continues until a new check of convergence is

performed.

338



N. Strömberg

5 ONE EXAMPLE

In this section, the established L-shaped benchmark used in topology optimization investi-

gations is studied in order to demonstrate the proposed multi-scale non-cooperative game ap-

proach. First, the frequency of the harmonic load is set to zero and the design presented to the

left in Figure 1 is obtained. The lower and upper limits on γe are 0.2 and 0.6, respectively. The

limit on the macro volume fraction is set to 0.4 and the limit on the lattice volume is 0.52, im-

plying a volume fraction of bulk material of 0.16. The natural frequency of the corresponding

fifth mode, which is presented to the left in Figure 2, is 2910.5 Hz.

Next, we let the driving frequency of the harmonic load be equal to the natural frequency of

2910.5 Hz. A new design is generated with a different macro-layout as well as different optimal

local grading of the TPMS-based lattice structure, see the right plot in Figure 1. The natural

frequency of this design for the fifth mode is decreased to 2124.1 Hz, which is significantly

different from the driving frequency of 2910.5 Hz. The corresponding fifth mode of this new

design is presented to the right in Figure 2.

Figure 2: The 5th mode of the two design. The natural frequency of the left design is 2910.5 Hz and 2124.1 Hz for

the right design. The external driving frequency of the harmonic force of the right design is 2910.5 Hz.

6 CONCLUSIONS

In this paper, we propose, implement and demonstrate a multi-scale non-cooperative two

player game for avoiding resonance for given harmonic loads. Player one minimize the static

compliance and player two minimize the dynamic compliance. The game is solved using SLP

and a Gauss-Seidel approach, and it is demonstrated the an equilibrium design with optimal

macro layout including optimal local grading of TPMS-based lattice structures is generated with

natural frequencies significantly different from the driving frequency of the harmonic load.
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Abstract. Damping structures under transient dynamic loads are essential in many industrial
applications, such as viscoelastic dampers. Topology optimization methods have previously
been applied to design structures using the time-domain approach without considering damp-
ing, or an extra layer of damping material is added to the final design to improve the damping
energy dissipation. The objective of this work is to maximize damping energy dissipation, sub-
jected to a volume constraint in the solid materials, considering a multimaterial topology opti-
mization with discrete design variables. Aluminum and rubber-like material are considered in
the structure’s design, and a linear elastic material model is adopted. Aluminum is used as the
structural material, while rubber-like material is utilized as the damping material. A transient
rectangular step load is applied to the structure to introduce a transient motion and assess the
inertial effects of the structure. The Rayleigh damping model is adopted, and the damping en-
ergy dissipation is calculated by dynamic analysis. The sensitivity numbers are calculated using
the adjoint variable method based on the discretize-then-differentiate approach. A bi-clamped
beam is studied to show the effectiveness of the proposed methodology. The results demonstrate
the effectiveness of the developed methodology in the design of damped structures.
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1 INTRODUCTION

Structures with damping energy dissipation are fundamental in many industries, where their
damping characteristics are desired to provide a minimum vibration amplitude in a specific
period of time. Due to this, researchers have shown an increased interest in designing structures
with desired damped dynamic behavior [1]

The topology optimization methods deal with structural design by optimally distributing
material taking into account the applied load with specific design constraints. Studies over the
past three decades have provided important information on the topology optimization applied
to enhance static-related characteristics of structures. However, little research has considered
time-domain dynamics-related topology optimization.

Most studies in dynamics-related topology optimization have been carried out dealing with
specific eigenfrequencies [2, 3], frequency gaps [4, 5, 6], or steady-state frequency responses[7,
8, 9, 10]. However, few studies have investigated time-domain dynamic topology optimiza-
tion where transient conditions are important. There are some problems when the objective
function is a transient response, such as treating time-dependent constraints, calculating design
sensitivity, approximation, and higher computational cost [11].

To date, several studies have investigated time-domain dynamic topology optimization prob-
lems utilizing objective functions based on displacement, such as the displacement of a target
degree of freedom, dynamic compliance, and strain energy [12, 13, 14], with and without using
the equivalent static loads method (ESLM) [15, 16]. Regardless, such studies are focused on
the minimization of the amplitude displacement related objective function.

Consequently, a methodology to design damped structures is developed and applied in this
work to maximize the damping energy dissipation as the objective function. The discretize-
then-differentiate approach is used to calculate the sensitivity numbers because it does not lead
to the inconsistencies presented with the differentiate-then-discretize approach [17].

This paper is divided into seven parts. Section 2 deals with the governing equations, the
Hilber-Hughes-Taylor numerical integration algorithm, HHT−α, and the calculation of the
damping energy dissipation. Section 3 presents the topology optimization problem. Section
4 is concerned with material interpolation. Section 5 presents the sensitivity analysis, and the
Bi-directional Evolutionary Structural Optimization procedure is shown in Section 6. Then,
numerical application considering a bi-clamped beam is presented in Section 7. Finally, the
conclusions are presented in Section 8.

2 GOVERNING EQUATIONS

The boundary problem for linear elastodynamics considering a finite element discretized
damped system is given by:

Mü(t) +Cu̇(t) +Ku(t) = f t, t ∈ [0, Tf ] (1)
u(0) = u0, u̇(0) = u̇0 (2)

where M , C and K are mass-, damping- and stiffness matrices, f(t) is an external load vec-
tor, [0, Tf ] is the time interval of interest, u(t) is the displacement vector, superimposed dots
indicate time differentiation, and the subscript zero relates to the initial condition.

The damping model used in this work is proportional damping, such that,

C = αcM + βcK (3)
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where αc and βc are the Rayleigh damping parameters.
The linear elastodynamic problem presented in Equations 1 and 2 are solved using the equa-

tions of the HHT−α method [18], and the Newmark−β [19] method. Then, the acceleration,üi,
the velocity, u̇i, and the displacement, ui, are computed by solving the following equation dis-
cretized in the time domain:

M1üi = −M0üi−1 −C0u̇i−1 −Kui−1 + (1− α)fi + αfi−1, for i = 1, ..., N (4)

where,

M1 = M + (1− α) γhC + (1− α) βh2K (5)
M0 = (1− α) (1− γ)hC + (1− α)

(
1
2
− β

)
h2K (6)

C0 = C + (1− α)hK (7)

To obtain a second-order accurate and unconditionally stable characteristics, α = 0.05, β =
(1 + α)2 /4, and γ = (1 + 2α) /2. h is the time step and N is the number of time steps. The
initial acceleration ü0 is calculated using the initial displacement, u0, and the initial velocity,
u̇0, as follows:

Mü0 = f0 −Cu̇0 −Ku0 (8)

The damping energy dissipated in a time interval of interest is used in this work as objective
function, in order to design damped structures. The objective function, Ed, can be calculated as
follows:

Ed(u̇(t),X) =

∫ Tf

0

u̇(t)C(X)u̇(t)dt (9)

where X is the matrix of the design variables.

3 TOPOLOGY OPTIMIZATION PROBLEM

The topology optimization problem consists in finding the material distribution that maxi-
mizes the damping energy dissipation for a given time interval, subject to volume constraints on
the solid material phases. Aluminum, rubber-like material, and void are considered inside the
structure during the topology optimization process, and its distribution is given by the design
variable X . The topology optimization problem can be stated as:

Find: X

Maximize:
∫ Tf

0

Edi(X, u̇)dt

Subject to: V ∗
s −

nel∑
e=1

VeXe1 = 0 (10)

V ∗
1 −

nel∑
e=1

VeXe2 = 0

M (X) ü(t) +C (X) u̇(t) +K (X)u(t) = f(t)

Xej = Xmin or 1; j = 1, 2 and e = 1, ..., nel
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where Xmin is a small value to avoid singularity, and V ∗
s is the final volume of the solid material,

sum of the final volume fraction of material 1, V ∗
1 , and material 2, V ∗

2 . The discrete design
variable for the eth element, Xej , is defined as follows

Xe1 =

{
1 Solid material

Xmin Void (11)

Xe2 =

{
1 Aluminum

Xmin Rubber-like material (12)

4 MATERIAL INTERPOLATION

The alternative material interpolation proposed by [20], mixed with the SIMP model, is used
to interpolate the material properties because it allows us to consider two solid materials and
void in the design domain without the presence of localized modes in void regions. Then, the
material interpolation of the elemental density, ρe, and the elemental elasticity matrix, Ke, are
given by the following equations:

ρe (Xe1, Xe2) = Xe1 [(Xe2) ρ1 + (1−Xe2) ρ2] (13)

Ke (Xe1, Xe2) =
[
Xmin−Xp

min
1−Xmin

(1−Xp
e1) +Xp

e1

]
[Xp

e2K
e
1 + (1−Xp

e2)K
e
2 ] (14)

where p is the penalty exponent, ρ1 and ρ2 are the densities of aluminum and rubber-like ma-
terial, respectively. The elemental damping matrix, Ce, is interpolated using the SIMP based
interpolation as follow:

Ce = Xe1 [Xe2C1 + (1−Xe2)C2] . (15)

where C1 and C2 are the damping matrices calculated using Equation 3 and the Rayleigh damp-
ing parameters of aluminum and the rubber-like material, respectively.

5 SENSITIVITY ANALYSIS

The final topology is obtained using a relative ranking of the sensitivity numbers in the BESO
method. The sensitivity numbers are calculated by the differentiation of the objective function
with respect to the design variables. These numbers are calculatd using the adjoint variable
method (AVM) [11] based on the discretize-then-differentiate approach because it produces
consistent sensitivities numbers [17].

In order to calculate the sensitivity numbers, the objective function 9 is discretized in the
time domain, as follows:

ϕ(X, u̇0, ..., u̇N) =
N∑
i=1

Edi(X, u̇) =
N∑
i=1

1

2
u̇T

i Cu̇i (16)

Then, the residual form of the motion equation and Newmark equations premultiplied by the
adjoint variables, λ, are added to the discretized objective function, ϕ. Finally, the modified
objective function, which is already discretized in the time domain, is derivated with respect to
each design variable,Xej , of the eth element and the jth interpolation, yielding the following
equation:

∂ϕ

∂Xej

=
N∑
i=0

(
1

2
u̇T

i

∂C

∂Xej

u̇i

)
+ λT

0

∂M

∂Xej

ü0 +
N∑
i=1

[
λT

i

(
∂M

∂Xej

üi +
∂C

∂Xej

˙̂ui +
∂K

∂Xej

ûi

)]
(17)
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for j = 1, 2, where ûi and ˙̂ui are given by:

ûi = (1− α) βh2üi + (1− α)

(
1

2
− β

)
h2üi−1 + (1− α)hu̇i−1 + ui−1, (18)

and

˙̂ui = (1− α) γhüi + (1− α) (1− γ)hüi−1 + u̇i−1, (19)

respectively.
The derivative of the stiffness matrix, the mass matrix and the damping matrix with respect

to the design variables of the first, j = 1, and the second, j = 2, interpolations are given by the
following equations:

∂M

∂Xe1

=
∂ρ

∂Xe1

Me = AρM
e, (20)

∂M

∂Xe2

=
∂ρ

∂Xe2

Me = [Xe1 (ρ1 − ρ2)]M
e, (21)

∂K

∂Xe1

= pXp−1
e1

(
1− xmin − xp

min

1− xmin

)
AK , (22)

∂K

∂Xe2

= pXp−1
e2 Ax (K

e
1 −Ke

2) , (23)

∂C

∂Xe2

= Aα

[
Xe1AρM

e +Xe1
∂M

∂Xe1

]
+ AβAxAK + AβXe1

∂K

∂Xe1

, and (24)

∂C

∂Xe2

= X2
e1 (α

c
1 − αc

2)AρM
e +Xe1Aα

∂M

∂Xe2

+Xe1 (β
c
1 − βc

2)AxAK +Xe1Aβ
∂K

∂Xe2

, (25)

where,

Aα = [Xe2α
c
1 + (1−Xe2)α

c
2] , (26)

Aβ = [Xe2β
c
1 + (1−Xe2) β

c
2] , (27)

Aρ = [Xe2 ρ1 + (1−Xe2) ρ2] , (28)

Ax =

[
xmin − xp

min

1− xmin
(1−Xp

e1) +Xp
e1

]
, and (29)

AK = [Xp
e2K

e
1 + (1−Xp

e2)K
e
2 ] (30)

(31)
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6 Bi-directional Evolutionaty Structural Optimization procedure (BESO)

BESO method is used to solve the topology optimization problem described in this work. It
allows the addition and remotion of material based on the sensitivity numbers and was imple-
mented as proposed by [21], following the next steps:

1. Define the design domain, boundary conditions and finite element mesh.

2. Define the HHT − α parameters.

3. Define the BESO parameters ( ER, ARmax1,ARmax2, V ∗
1 , V ∗

2 , Rmin, τ and N ).

4. Calculate the nodal displacements, velocities and accelerations usign Equations 4 to 8.

5. Calculate the sensitivity numbers using Equations 17 to 31.

6. Pos-processing the sensitivity numbers.

7. Calculate the next targeted volume for both materials.

8. Update Xe1 for e = 1, ..nel.

9. Update Xe2 in the elements with Xe1 == 1.

10. Run steps 4 to 9 until the stop criterion and the final volume of both materials are satisfied.

11. The final topology is obtained.

The topology optimization problem is parameter-dependent, where the BESO parameters are
set by performing numerical examples. The BESO parameters used in this work are the evo-
lutionary ratio, ER, which represents the volume percentage of aluminum removed from the
design domain in each iteration. The maximum addition ratio, ARmax, which limits the number
of void elements that turn solid elements ( ARmax1), and the number of elements filled by rubber-
like material that turn aluminum (ARmax2) in each iteration. The filter radius, Rmin, is used to
avoid checkerboard and mesh-deéndency. The convergence tolerance, τ ; and the convergence
parameter, N .

7 NUMERICAL APPLICATION

This example uses the bi-clamped beam, presented in Figure 1, to demonstrate the proposed
methodology’s effectiveness for designing highly damped structures under transient loads. The
gray part represents the design domain, surrounded by a fixed domain border. A rectangular step
load of 1×103 N is applied in the middle of the bottom edge of the structure. The two materials
considered are aluminum and a rubber-like material with Young’s Modulus E1 = 69× 109 Pa
and E2 = 22 × 109 Pa, Poisson ratio ν1 = 0.3 and ν2 = 0.49 and, density ρ1 = 2700Kg/m3

and ρ2 = 980Kg/m3, respectively.
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Figure 1: Bi-clamped beam

The right half of the domain is considered by symmetry and discretized into 150×50 bilinear
isoparametric four-node plane stress elements. The aluminum and rubber-like material’s final
volume fractions are 75% and 5%, respectively. The BESO parameters used are an evolutionary
ratio of ER = 1%, an addition ratio of ARmax1 = ARmax2 = 1%, a filter radio of rmin = 0.15m,
a convergence tolerance of τ = 1 × 10−2 , and a convergence parameter of N = 5. The time
interval of interest is from zero to Tf = 0.1 s, and it is discretized into 200 constant steps. For
the HHT − α method, it is used an α = 0.05.

Figure 2(a) presents the final topology, and Figures 2(b) and 2(c) are the sensitivity maps on
the last iteration related to the design variables X1 and X2, respectively. The black and pink
areas represent the aluminum and the rubber-like material, respectively. Figure 2(a) shows that
the algorithm concentrates the rubber-like material near the load point and the supports where
the structure deformation is important.

(a)

(b) (c)

Figure 2: Topology optimization results: (a)Final topology; (b) Sensitivity numbers with respect
to X1; (c) Sensitivity numbers with respect to X2

Figure 3 shows the history of the objective function and of the material volume along the
iterations. The design domain starts full of aluminum. Then, the aluminum is removed from the
design domain, while the rubber-like material is added. When the final volume of the rubber-
like material is satisfied, the algorithm keeps removing the aluminum until its final volume is
satisfied, allowing the void to be part of the domain, as observed in Figure 3. Figure 3 also
shows that the variation of the objective function is smooth along the iterations.
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Figure 3: Evolutionary histories of the objective function and volume fraction for the bi-
clamped beam using the discretize-then-differentiate approach

Figures 4(a) and 4(b) compare the displacement and velocity of the load point of the initial
and final topologies. These figures show that the final topology presents a higher damping
behavior but is less rigid when compared with the initial topology. It is expected to have a less
rigid final topology because the stiffer material, the aluminum, is removed gradually during the
topology optimization adding a rubber-like material and void.

(a) (b)

Figure 4: Displacement and velocity histories of the load point of the initial and final topologies

8 CONCLUSIONS

This work develops a BESO-based methodology to design highly damped structures sub-
jected to arbitrary time-dependent loads. The HHT-α is used to solve the linear elastodynamic
problem because it dampens the contribution of high modes in the dynamic response. Two ma-
terials and void are considered in the topology optimization process. The sensitivity numbers
are calculated using the discretize-then-differentiate approach. The material interpolation con-
sidered in this work does not induce artificial modes in the void regions. The results demonstrate
the effectiveness of the developed methodology in the design of highly damped structures when
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considering multiple material phases. The proposed design methodology places the rubber-like
material near the supports and the point of the force application where the structure deformation
is important.
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