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PREFACE 

This volume contains the full-length papers presented in the 14th International Conference on 
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Computing for Industrial Applications. 

EUROGEN aims at bringing together specialists from Universities, Research Institutions and 

Industries developing or applying Evolutionary and Deterministic Methods in design optimization 

and emphasizing on industrial and societal applications. 

This series of conferences was originally launched by the European Thematic Network INGENET 
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Abstract 

In control of structures for earthquake excitation, tuned mass dampers (TMDs) can be used. 
For the efficiency of a passive control system, it is needed to tune the parameters of TMD ac-
cording to the parameters of the structures. For this aim, the use of metaheuristic methods 
plays an important role in the optimization of TMDs. Metaheuristic algorithms are inspired 
by a process of a happening or a living creature. Harmony Search (HS) imitates the musical 
performance process involving the note tuning process of musicians to gain the admiration of 
audiences. In the algorithm, two types of optimization using global and local searches are 
used. In global, a new note is generated, while a neighboring value is assigned in local 
search as the imitation of playing something similar to the known notes. In this process, two 
algorithm-specific parameters are used. These parameters are called harmony memory con-
sidering rate (HMCR) and pitch adjusting rate (PAR). The chosen values of parameters may 
be effective on the performance of the algorithm. For that reason, adaptive techniques that 
automatically update the parameter in the iterations are also suggested. In the present study, 
adaptive HS is presented on optimum design of TMD for structures subjected to earthquake 
excitations. For the numerical examinations, a real-size structure plan is considered by 
checking the stroke capacity of TMD during optimization. Also, the optimization is done by 
using a wide set of earthquake records to find a general solution. According to the results, the 
adaptive HS is very suitable to find a feasible TMD for structures subjected to earthquake ex-
citations.  

Keywords: Structural Control, Tuned Mass Dampers, Optimization, Metaheuristic Algo-
rithms, Harmony Search 
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1 INTRODUCTION 
Safe design and modeling of the structures is a significant issue in the meaning of safety 

against structural hazards or collapses for these structures, which are subjected to dynamic 
excitations such as earthquake, wind, wave, etc. In this regard, these dangers can be prevented 
by absorbing the energy of mentioned excitations through the usage of some devices as struc-
tural control systems. The mentioned devices contain several options known as passive, active, 
semi-active, and hybrid systems. 

Passive control systems, which are more widely used ones, have various applications such 
as diagonal steel bracing, seismic base isolation, tuned mass or liquid dampers. These systems 
are more economic, and comfortable to apply according to other ones, but there is a disad-
vantage intended for near-fault ground motions, which have high-level peak velocities. On the 
other side, active systems provide the limitation of structural responses (displacement, veloci-
ty or acceleration) produced by dynamic excitations like earthquakes through benefiting from 
an energy source placed within the structure. Also, these devices contain several types such as 
active mass damper, active tendon systems, active variable stiffness systems, etc. The semi-
active structural control system is created with the usage of both passive and active ones. 
These systems provide more structural protection across passive systems, but damping of re-
sponses realizes in lower level than active systems. As to hybrid systems, they are also mod-
eled similar to semi-active systems. They can be also utilized during an earthquake even if 
power cuttings thanks to having a passive control part. 

It is one of the most-used devices from structural passive control systems, that tuned mass 
damper (TMD) provides the reducing and then stopping of responses namely vibrations with-
in any structures under dynamic effects. Optimum tuning of the mechanical parameters of the 
device is the most important issue to realize the mentioned aims by these systems. These pa-
rameters are comprised of frequency and damping factors of TMD’s, which are substantially 
related to natural period or damping ratio of structure. Also, for active systems, optimum tun-
ing of controller parameters is required for providing sufficient protection. Furthermore, exci-
tation character is also a significant factor in the meaning of efficiency and performance of 
optimum TMD design. Apart from these, these devices can be benefited within numerous 
structures such as automobiles, trains, airplanes, construction equipment, etc. to balance vi-
brations. As to traditional constructions, so many applications are made for old/new-built 
structures containing skyscrapers, television towers, pedestrian or highway bridges, stadiums, 
nuclear plants, etc. to keep safety level by absorbing vibrations produced by seismic activa-
tions as earthquake besides wind forces, traffic movements or noises, too. 

The origin of the mentioned vibration absorption device as TMDs is based on the invention 
of Frahm [1] that is a simple version of TMDs and contains one mass, which has also a stiff-
ness member like spring. Following, the second progression is realized by Ormondroyd and 
Den Hartog [2]. They updated the first version of TMDs by placing a damping part to classi-
cal form, and thanks to this development, vibrations occurred by random frequency excita-
tions came to reducible and absorbable.  

In addition to these, the most popular usage for TMDs belongs to Taipei 101 skyscraper 
building located in Taiwan. Here, TMD has a formation with a huge spherical mass connected 
with cables (stiffness elements) together with hydraulic pumps (damping members), and this 
vibrator-like pendulum ensures decreasing strong wind effects, besides earthquake effects, too. 
Moreover, a TMD for the Berlin television tower in Germany was established to protect the 
structure toward powerful wind forces. As a different application in the use of TMDs, retrofit-
ting of existing/old structures was carried out to protect against seismic effects. For example, 
Lax Theme Building in International Los Angeles Airport was restored via TMD, which is 
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designed similar to a slab containing several viscous dampers and base isolation systems. 
Thanks to this application, it was observed that structural responses can be decreased up to 
40% [3].  

These control devices can be utilized for structures with single (SDOF) and also multiple 
(MDOF) degrees of freedom. In SDOF structures, the basic purpose of the usage of TMDs is 
to generate a secondary mode, which is slightly close to the frequency level of the main struc-
ture. In that case, it prevents the generation of any resonance. Furthermore, the motion of 
TMDs during any vibration case can be controlled and tuned due to TMDs having damping 
capability. Here, this expression is based on the damping parameter of TMDs, and it should 
be determined as suitable as possible namely optimum. Besides, there are also some important 
properties for optimum controlling of TMD’s such as stiffness, frequency or mass, etc. To 
make it possible to find these parameter values, different formulations or equations were de-
veloped, but none of them contains a definite solution due to that structures may be under ex-
citations with random frequencies. As an example to proposed formulations from previous 
literature, Den Hartog developed two separate expressions based on the determination of a 
parameter, which is the ratio of frequencies belonging to the undamped main structure and 
TMD system, besides the optimum ratio of damping [4]. However, in various applications, 
these expressions are investigated by dealing with inherent damping for SDOF structure, too 
[5-6]. Following, by Warburton, different formulations were suggested for various loadings 
such as random white noise and harmonic excitations as regards undamped SDOF structures 
again [7]. On the other side, Sadek et al. produced some formulas by operating numerical 
methods for SDOF and MDOF main systems, which have inherent damping [8]. These for-
mulas also play a part in the scope of reduction of structural responses such as displacement 
and acceleration that occurred under different earthquake excitations.  

However, metaheuristic-algorithms, which can be utilized as estimation or optimization 
methods, besides, advanced computing approaches, numerical calculating, and analysis tech-
niques can help to evaluate whole vibration modes in MDOF structures. In this meaning, 
some studies and applications were realized with the mentioned metaheuristic approaches, 
which were designed by inspiring from properties of alives within natural life, physical or 
chemical processes, capabilities based on memory, etc. 

For example, the starting of metaheuristic methods, genetic algorithm (GA) was handled 
for the generation of optimum TMD design for structures with different types [9-13]. Also, 
particle swarm optimization (PSO), which can be assumed as the second step for metaheuris-
tics, was investigated to find the optimal TMD parameters for viscously damped SDOF main 
systems exposed to different dynamic effects containing harmonic base acceleration, non-
stationary or random Gaussian white noise excitations [14-15]. Various metaheuristic algo-
rithms are also utilized for the generation of TMD design optimally intended for different tar-
gets or different structural types. These are comprised from the studies applied with ant 
colony optimization (ACO) [16], harmony search (HS) [17-20, 25], artificial bee colony algo-
rithm (ABC) [21], gravitational search algorithm (GSA) [22], cuckoo search (CS) [23], bat 
algorithm (BA) [24], teaching-learning-based optimization (TLBO) [19-20, 27], flower polli-
nation algorithm (FPA) [19-20, 25-26, 28] and Jaya algorithm (JA) [20]. 

In the present study, the adaptive HS algorithm was presented for optimum design of 
TMDs that are positioned on the top of the structure subjected to earthquakes. The methodol-
ogy is a multi-objective one that controls the stroke of the TMD in an applicable range limited 
by a user-defined value and minimization of the maximum top story displacement under a set 
of earthquake records. The method is presented on a 15 story real-size reinforced concrete 
(RC) structure.   
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2 THE OPTIMIZATION METHODOLOGY AND ADAPTIVE HARMONY 
SEARCH 

Musician as an artist tries to generate any musical work with many efforts during long 
times. There are some points thought as remarkable, for instance, age, point of view, country 
or area where he lives, and also characteristic features, etc., while an artist is performing this 
action. On the other side, this musical work is revealed with the development of tunes or har-
monies through examining and well combination of different note options. Here, the main 
purpose is to win the favor of listeners', and following he/she tries to develop the work by 
evaluating feedbacks. In this regard, this development process for any musical work can be 
assumed as an optimization case. Thus, in the year 2001, Geem et al. inspired by the men-
tioned process and proposed an optimization algorithm called harmony search (HS), which is 
one of the memory and musical-based metaheuristic methods [29]. As in many metaheuristic 
algorithms, some stages are also performed with HS for any optimization problem. 

In this study, a modified version of HS is presented for the optimization problem. This 
modification includes an adaptive parameter setting and consideration of the best existing so-
lution.  

The optimization methodology as similar to all engineering optimization problems starts 
with the definition of the problem by the design constants, ranges and algorithm parameters. 
In the present study, it is also needed to define earthquake records for the dynamic analysis. In 
the study, a set of earthquake records are used and the excitation with the most effect is con-
sidered. The set is the records grouped as far-field ground motion records in FEMA P-695: 
Quantification of Building Seismic Performance Factors [30]. The design constants include 
the mass, stiffness and damping values of the structure. The design variables of the problem 
are the period (Td d) of TMD that is positioned on the structure. As a 

d is defined between 0.01 and 0.3, while Td is searched between 0.5 and 1.5 
times of the critical period of the structure.  

The beginning stage is comprised of generation initial solutions (including 10 sets of de-
sign variables in the numerical example) following the definition of design variables, con-
stants, and also parameters specific to the algorithm. The mentioned special parameters are 
known as harmony memory consideration rate (HMCR) and fret width (FW) that provide the 
renew of solutions with the controlling of musical memory and adjusting of tunes. However, 
these parameters are utilized in the second stage, which is the iteration process, namely, the 
fundamental updating application is carried out at this time.  

For all generated candidate solutions, the objective function is calculated. These results are 
found via dynamic analysis. For this analysis, a program was developed via MATLAB with 
Simulink [31]. 

In the study, two objectives are considered. As given in Eqs. (1) and (2), the objectives; f1 
and f2 are related with the maximum top story displacement (xN) and the stroke capacity of 
TMD. f1 is minimized and f2 must be lower than a user-defined value that is taken as 2 in the 
present study. xd is the displacement of TMD with respect to the ground.    

Then the iteration process starts and it is done for several iterations (200 in the numerical 
example). All results corresponding candidate solutions are checked according to the follow-
ing procedure. First, f2 values are checked to minimize if both new and existing solutions ex-
ceed the limit taken as 2. If one of them is smaller than 2, it is taken as the best. If both f2 
values are lower than 2, f1 is considered in the optimization.  
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  (1) 

  (2) 

The iteration process is realized by choosing between two different alternatives as generat-
ing notes randomly (Eq. (3)) or playing from a specific fret through remembering of notes 
within memory (Eq. (4)). These are determined according to HMCR value compared with a 
number, which is a random value between 0 and 1 (rand( )). Equations expressed the updat-
ing action for a new solution can be seen in Eqs. (3)-(4). 

  (3) 

 (4) 

Where, for ith design parameter, Xi,new is new/updated value of solutions placed in matrix; 
Xi,min  and Xi,max are limits as lower and upper values of the dealed solution, besides Xi,n is nth 
solution selected from initial matrix randomly.  

Furthermore, in the current study, an adaptive version of HS is proposed with respect to the 
usage for optimum design of TMDs in the direction of determining the best mechanical prop-
erties of it. Also, this modification is called adaptive harmony search (AHS).  

To realize this process, values of HMCR and FW parameters are adjusted and modified 
along with iterations according to pre-defined initial values (0.5 for both in the numerical ex-
ample) of them and the current iteration step. For this reason, parameters are transformed to 
the new case as seen below equations. 

(5) 

(6) 

Here, the total iteration number is indicated with MI, besides IN is the current iteration step. 
Besides, FWin and HMCRin are meant to the constant values determined in the initial phase of 
the design process. Also, this operation provides to increase in remembering possibility for 
notes within memory progressively, and searching size is decreased due to that multiplier im-
portance of limitation range goes to a smaller level. On the other side, there is another modifi-
cation, which is benefited for the development of this version. This action is related to the 
selection of a solution, which will be considered and evaluated to use in updating. Here, this 
solution can be selected randomly among all solutions, or the determined as best one. This 
case is realized according to a value specified as the consideration rate of the best solution 
(BSCR) taken as 0.3 in the present study. In this respect, nth solution (Xi,n) seen in Eq. (4) is 
changed with the best one, when the randomly determined number is bigger than the value of 
this parameter, similar to HMCR. 

3 NUMERICAL EXAMPLE 
A case of a 3D structure is presented to verify the method on real-size buildings. 15-story 

reinforced concrete structure with the story plan given as Figure 1 is controlled with a TMD. 
The damping of the main structure was taken according to Rayleigh damping and it is as-
sumed as 5% for reinforced concrete structures.  
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Figure 1: The story plan of reinforced concrete structure. 

The 3D structure has 9 gridlines with equal distances between them in both directions. The 
distance between is 8 m and the height of each story is 3.5 m. The rigidity of the structure in 
both translational directions was calculated as 5520MN/m. The structure has a 3590-ton story 
mass.  

The mass of TMD is taken as 2% of the total mass of the structure. The value of it is 1077 
tons. The optimum values such as Td d are found as 1.6770 and 0.1644, respectively. The 
value of f1 and f2 for the optimum results are 0.3928 m and 1.9991, respectively. The maxi-
mum displacement under a set of earthquake records is between 0.0425 m and 0.4638 m for 
the uncontrolled structure. For the structure with optimum TMD, the maximum displacement 
is changed between 0.0381 m and 0.3928 m. The most critical excitation is the MUL009 
component of the 1994 Northridge earthquake. The time-history plot for the top story dis-
placement is shown in Figure 2.  
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Figure 2: Time-history plot for the critical excitation. 
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4 CONCLUSIONS 
The aim of this study is to both present applications of a TMD on a real-size structure and 

an improved metaheuristic method for this application. According to the results, the optimiza-
tion is effective and it can be seen from the reduction of the objective function values by 
15.3%. As seen from the time-history plot given for the most critical excitation, TMD is also 
effective on rapid damping and the effect of TMD is significant on the peak vibration with the 
most amplitude, but the essential effect is observed in the following peaks. Additionally, 
TMD is effective for all excitations that were used in the optimization.  
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Abstract 

In the optimum design of structural systems, the robustness and the performance are related to 
the best tuning of the parameters of the method. For metaheuristic algorithms inspired by phe-
nomena in life, algorithm-specific parameters exist in addition to general parameters that are 
the population of the generated candidate solution and the number of iterations that are needed 
to find the final optimum solution. In the optimum design of reinforced concrete (RC) structures, 
the dimensions are optimized by considering the minimization of the total cost. These problems 
are highly constrained by the design requirements presented in design codes. Especially, RC 
retaining walls involve the check of stability conditions as geotechnical state limits in addition 
to structural state limits. This situation makes the optimization problem challenging. A better 
and robust algorithm is always in search. In the present study, two specific parameter-free 
metaheuristic algorithms are employed. These algorithms are teaching-learning-based optimi-
zation (TLBO) and Jaya algorithm (JA). Since JA is a single-phase algorithm and both phases 
of TLBO defined as teacher and learner phases are consequently applied, a switch probability 
is not needed. Also, the existing factor is defined randomly. These two algorithms were tested 
on three cases and the results were compared with three classical algorithms such as Genetic 
Algorithm (GA), Differential Evaluation (DE), and Particle Swarm Optimization (PSO). In this 
verification, JA needs less function evaluation to reach the optimum results. As conclusions, 
both TLBO and JA are robust methods for the optimization problem.   

Keywords: Reinforced Concrete, Retaining Walls, Optimization, Metaheuristic Algorithms 
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1 INTRODUCTION 
Generally, engineering designs are carried out by taking two main objectives into consider-

ation. The first of these is structural security, the other is cost. Good engineering design can be 
defined as the best combination or balance of these two objectives. The process in which this 
balance is investigated is called optimization and the obtained result is called optimum design. 

Different methods have been developed and used from past to present in order to find the 
optimum design in engineering designs. Especially in recent years, metaheuristic algorithms 
are one of the methods used frequently for this purpose. Metaheuristic algorithms are methods 
developed by taking inspiration from nature. Examples of these are genetic (GA) [1,2] and 
differential evolution (DE) [3] algorithms from the evolutionary process, flower pollination 
(FPA) [4] from the pollination process of flowers, the bat algorithm (BA) [5] from the echolo-
cation characteristics of bats, the gray wolf optimization (GWO) [6] from the herd hierarchy 
and hunting processes of the gray wolves, the particle swarm optimization (PSO) [7] from the 
herd movement of living things, ant colony optimization (ACO) [8] from the foraging process 
of ants, teaching-learning-based optimization (TLBO) [9] from the student-teacher relationship 
and learning in a classroom. 

An optimization process is carried out using metaheuristic algorithms in many areas of struc-
tural engineering. One of these areas is the optimum design of reinforced concrete structures. 
Since reinforced concrete structures consist of two different mechanical and cost-effective ma-
terials, it is necessary to find a combination that will provide the lowest cost (optimum design) 
of concrete and steel. The optimum design of RC retaining walls is one of the areas that have 
been researched extensively. Various metaheuristic methods such as Simulated Annealing (SA) 
[10,11], PSO [12], Harmony search (HS) [13] Big Bang Big Crunch (BB-BC) [14], Firefly 
Algorithm (FA) [15], FPA [16] have been used in the design of RC retaining walls. In addition 
to these studies, there are also studies where performance evaluation of algorithms [17] is per-
formed and modified or hybrid algorithms [18] are used. 

In this study, the effect of different parameters on optimum RC retaining wall design was 
investigated. For this purpose, five different metaheuristic algorithm-based methods have been 
developed. In this way, as a result of the study, the researchers were informed about the effects 
of parameters as well as the most effective metaheuristic method for optimum design. 

2 OPTIMUM DESIGN VIA METAHEURISTIC ALGORITHMS 
Metaheuristic methods can generally be summarized with 3 stages as given in Fig.1. 
In the first stage (pre-optimization), the design constants of the problem, the lower and upper 

limits of the design variables, the population number (pn), the algorithm-specific parameters 
and the stopping criteria of the optimization are defined. Then, candidate solutions (totally pn) 
are generated according to Eq. (1) and stored in initial solution matrix.        

  = , + ( , , )    (1) 

In Eq. (1), , ,  and ,  represent ith candidate solution, minimum and maximum 
limits of ith solution respectively. rand is a function that is generated by random values between 
0 and 1. 

The second stage is the analysis stage. In this stage, the objective function of each solution 
is calculated, and the design constraints of the problem are checked. Objective functions of 
solutions that violate the design constraint are penalized using a penalization value. Within the 
scope of this study, the objective function is determined as the minimum material cost given as 
Eq.(2), and for the penalization, a high value is defined. 
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  min ( ) = +   (2) 

In Eq. (2), Cc and Cs are unit concrete and unit reinforcing steel costs respectively. Vc and Ws 
represent the volume of the concrete and unit volume weight of the steel, respectively. 

At the last stage (optimization stage), an iterative process is started. In this process, first of 
all new solution matrix is generated according to algorithm equations. In this study, 5 different 
algorithms, GA, DE, PSO, TLBO and JA were employed and algorithm-specific equations are 
given below. 

Equation of genetic algorithm (GA): 

  , =  > ,       , +  , ,  (3) 

In Eq. (3), mr is mutation rate, q is a gene (design parameter) randomly-selected from the 
total design parameter. , , ,  and ,  are new design variable, lower and upper 
limit values of qth design variable, respectively. Unlike GA, DE uses two equations (Eq. 4 and 
5). New design variables are derived by selecting one of these two equations according to DE 
rules. 

  ,  =  , +  , ,             (4)  

  X , =  X ,      {if  rand CR     or    cs = rand   (5) 

In Eq. (4 and 5), X , , X , , X ,  represent randomly selected different solutions and F is the 
weighting factor. CR, cs, and randcs are crossover possibilities, current candidate solution, and 
randomly selected solution.  

In PSO, new values are found by using a single equation as in GA. This equation as follows 

  , = , + ,    (6) 

where ,  is the current position of jth particle and ,  can be calculated with Eq. (7). 

  , =  , + , ,   +   , ,      (7) 

In Eq. (7), ,  is current velocity jth particle. ,  and ,  represent values of the best 
global and local positions respectively.  and   are positive constant parameters used to con-
trol velocity. 

In the TLBO algorithm, two different equations are used in generating new solutions. How-
ever, unlike other two-equation algorithms, it uses both of the equations one after the other 
instead of choosing one of the equations. These equations are as follows 

 X , = X , + rand X , (TF) X ,    (8) 

  , =
< ,     , +  , ,

> ,    , +  , ,
  (9) 

where X , , X , , X ,  represent values of existing solution, best solution and mean val-
ues of existing solutions respectively, and TF shows teaching factor.  X ,  and X ,  are randomly 
selected candidate solutions. Objective functions corresponding to these solutions (X ,  and X , ) 
are expressed with OF  and OF , respectively. 

The other algorithm used in the study, JA uses a single equation given in Eq.(10). 

  , = , +  , ,  , ,   (10) 
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In Eq.(10), ,  is worst solution in terms of the objective function.

After the generation of new solution matrix, it is done comparation between solution matrix 
and existing one. In case of new solutions have better objective function value, new solutions 
replace existing solutions. In case new solutions have better objective function value, the exist-
ing solution matrix is updated with new solutions. This process is continued until satisfying 
stopping criteria of the problem. In this study maximum iteration number is determined as stop-
ping criteria. 

Figure 1: The optimization flowchart 
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3 NUMERICAL EXAMPLE 

RC retaining wall that is investigated for the optimum design can be seen in Fig.2. As shown 
in the figure, there are 5 design variables. The limits of these design variables and the design 
constants are presented in Table 1. In reinforced concrete design, the constraints of ACI 318 
[19] regulation were applied. Information on the constraints applied in the optimization process 
is given in Table 2. In addition to these, various load and safety factors are summarized in Table 
3.  

 

 
Figure 2: Design variables Cantilever retaining wall 

Table 1. Optimization data for T shape walls respect to a specific design 

 Definition Symbol Limit/Value Unit 

D
es

ig
n 

Va
ri

ab
le

s Heel slab/back encasement width of retaining wall X1 0-10 m 
Toe slab/front encasement width of retaining wall X2 0-3 m 
Upper part width of cantilever/stem of wall  X3 0.2-3 m 
Bottom part width of cantilever/stem of wall  X4 0.3-3 m 
Thickness of bottom slab of retaining wall  X5 0.3-3 m 

D
es

ig
n 

C
on

st
an

ts 

Difference between top elevation of bottom-slab with soil 
in behind of wall (active zone)/stem height H 6 m 

Weight per unit of volume of back soil of wall (active zone) z 18 kN/m3 
Surcharge load in active zone (on top elevation of soil) qa 10 kN/m2 
Angle of internal friction of back soil of wall      30°  
Allowable bearing value of soil qsafety 300 kN/m2 
Thickness of granular backfill  tb 0.5 m 
Coefficient of soil reaction Ksoil 200 MN 
Compressive strength of concrete fc 25 MPa 
Tensile strength of steel reinforcement fy 420 MPa 
Elasticity modulus of concrete Es 200000 MPa 
Weight per unit of volume for concrete c 25 kN/m3 
Weight per unit of volume for steel s 7.85 t/m3 
Width of wall bottom slab    b 1000 mm 
Concrete unit cost Cc 50 $/m3 
Steel unit cost Cs 700 $/ton 
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Table 2. The design constraints 

Description Constraints 
Safety for overturning stability g1(X): FoSot,design ot 
Safety for sliding g2(X): FoSs,design s
Safety for bearing capacity g3(X): FoSbc,design bc 
Minimum bearing stress (qmin) g4(X): qmin 
Flexural strength capacities of critical sections (Md) g5-7(X): Md u 
Shear strength capacities of critical sections (Vd) g8-10(X): Vd u 
Minimum reinforcement areas of critical sections (Asmin) g11-13(X): As Asmin 
Maximum reinforcement areas of critical sections (Asmax) g14-16(X): As Asmax 

Table 3. ACI 318 Regulation values utilized in optimization process 

Load Coefficients in ACI Regulation Symbol Value 
Coefficient for load increment Cl 1.7 
Reduction coefficient for section bending moment capacity FiM 0.9 
Reduction coefficient for section axial load capacity FiN 0.9 
Reduction coefficient for section shear load capacity FiV 0.75 
Constant load coefficient GK  0.9 
Live load coefficient QK 1.6 
Horizontal load coefficient HK 1.6 
Safety coefficient respect to overturning Osafety 1.5 
Safety coefficient respect to slipping Ssafety 1.5 

Three different case analyses were performed using GA, DE, PSO, TLBO and JA. These 
cases are as follows: 

Case 1: Optimum design variables are investigated using thirty multiple cycles of optimiza-
tion. In the optimization process, twenty populations and five thousand iteration numbers are 
used.  

Case 2: Effect of wall height on the optimum design as well as algorithm performances are 
investigated. As different from Case 1, H is defined as 10m.  

Case 3: Best population and iteration number combination are investigated. For this investi-
gation, optimization operations are carried out for different maximum iteration numbers from 
1 to 5000 by increasing 499 in each step and for different population numbers such as 3, 5, 10, 
15, 20, 25, 30. 

The optimum results for these cases are shown in Table 4-6, respectively. 

Table 4. Optimum design results for Case 1. 

Algorithm X1 X2 X3 X4 X5 Min. Cost Ave. Cost Standard Dev. 
GA 4.1257 0.0003 0.2003 0.6212 0.4274 428.2421 449.3181 36.9566092 
DE 4.1323 0.0000 0.2000 0.6098 0.4267 428.1139 433.3653 11.4300331 
PSO 4.1322 0.0000 0.2000 0.6099 0.4267 428.1139 449.2315 40.6569904 
TLBO 4.1323 0.0000 0.2000 0.6099 0.4267 428.1139 428.1139 0.0000005 
JA 4.1323 0.0000 0.2000 0.6099 0.4267 428.1139 428.1139 0.0000012 

Table 5. Optimum design results for Case 2. 

Algorithm X1 X2 X3 X4 X5 Min. Cost Ave. Cost Standard Dev. 
GA 6.3735 1.5040 0.2010 1.3299 0.7140 1365.7614 1370.8030 5.8839356 
DE 6.3480 1.4917 0.2000 1.3656 0.7086 1365.2365 1442.5197 146.3331618 
PSO 6.3482 1.4879 0.2000 1.3655 0.7074 1365.2432 1473.0711 137.6288067 
TLBO 6.3479 1.4920 0.2000 1.3658 0.7087 1365.2365 1365.2368 0.0001623 
JA 6.3478 1.4919 0.2000 1.3660 0.7087 1365.2367 1371.6683 34.6327849 
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Table 6. Optimum design values of wall with the best population-iteration combinations 

Algorithm X1 X2 X3 X4 X5 Min. Cost Ave. Cost Standard Dev. Iter.
Num. 

Pop. 
Num. 

GA 4.1304 0.0046 0.2001 0.6106 0.4240 428.2186 428.6384 0.34408003 2995 15 
DE 4.1323 0.0000 0.2000 0.6098 0.4267 428.1139 428.1139 0.0000000 1997 30 
PSO 4.1324 0.0000 0.2000 0.6096 0.4267 428.1140 699.2741 732.5740371 3993 30 
TLBO 4.1323 0.0000 0.2000 0.6098 0.4267 428.1139 428.1139 0.0000126 4991 25 
JA 4.1323 0.0000 0.2000 0.6099 0.4267 428.1139 428.1139 0.0000057 4492 25 

4 CONCLUSION 

4.1 Case 1 
DE, PSO, TLBO and JA find close values in terms of objective functions (minimum cost), 

whereas GA could not reach the minimum value. Therefore, it can be said that all algorithms 
except GA are effective in finding the minimum result. However, as seen in Table 4, the stand-
ard deviation and average cost values of the DE and PSO algorithms are higher than other ones. 
Therefore, it can be concluded that TLBO and JA algorithms are more effective and stable for 
this structural model. 

4.2 Case 2 
Increasing the wall height from 6m to 10m caused the optimum X2 value, that is found zero 

in Case 1. The minimum cost design has been obtained with DE and TLBO algorithms. Besides, 
it is seen that JA and PSO obtained results very close to these results. Considering all the pa-
rameters obtained from the analysis results of the algorithms, it can be said that TLBO is better 
than the others. 

4.3 Case 3 
It is seen that all algorithms except GA have reached the optimum value. When all the sta-

tistical values are evaluated together, it is understood that the DE algorithm seems better, but 
there is no significant difference between the TLBO and JA algorithms. In terms of the number 
of iterations, the DE algorithm again reaches a slightly faster result. In terms of population 
numbers, it can be said that 15 to 30 population numbers are the most suitable range for opti-
mum analysis. 
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Abstract 

Teaching-learning-based optimization (TLBO) is a metaheuristic algorithm that simulates the 
two phases of education. These two phases namely the teacher and learner phases are conse-
quently done in the optimization processes because in real life, the education with a teacher 
continues with the self-learning of students by sharing knowledge and information in class. 
TLBO is a user-defined-free algorithm, but it contains randomly defined parameters such as 
teaching factor (TF). TF can only take integer numbers and it is randomly chosen as 1 or 2. 
In this study, TF is modified as real numbers and an adaptive limitation is applied for the 
maximum value of TF. The algorithm is applied to various structural mechanics problems 
that are used benchmark structural optimization problems. The investigated problems are the 
weight optimization of cantilever beams and the minimization of total material and construc-
tion cost of a tubular column problem. The modification to the TF plays an important role in 
the local optima problem.    
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1 INTRODUCTION 
In engineering, there are two processes which are analysis and design. Firstly, the mathe-

matical model of the engineering problem is analyzed, and then it is designed according to the 
requirement that provides safety and demands of the users. In design, this process is compli-
cated in finding the best possible design due to existing constraints. These constraints reflect 
user demands and design regulations that formalize the safety factors for maximum displace-
ment, stress, slenderness, and the required ductility in structural engineering. A good engineer 
has the goal of finding the best economical solutions. In that case, the design problem is a 
minimization problem of the total cost (or weight of the material) and it is a nonlinear one due 
to existing of constraints. In that case, metaheuristic algorithms are an excellent choice to 
make an iterative process to optimize the design.  

Metaheuristic algorithms imitate phenomena in life and formulate them as several phases 
of an iterative process. According to Sorensen et al. [1], there are five periods of metaheuristic 
starting in the 1940s and now, we are in the framework-centric period. In this period, the 
number of metaheuristic shows a great increase, but these methods are criticized due to simi-
larity to each other. The only difference is to use a different metaphor. Examples of metaphors 
of the best-known methods are natural evaluation in the genetic algorithm (GA) [2-3], musical 
performances in harmony search (HS) [4], the behavior of ants in ant colony optimization 
(ACO) [5], reproduction process flowers in flower pollination algorithm (FPA) [6], sensing 
ability of bats in Bat Algorithm (BA) [7] and teaching-learning process in teaching-learning-
based optimization (TLBO) [8].  

In the present study, TLBO was modified for solving structural optimization problems. The 
modified teaching factor of TLBO is presented on two benchmark problems.       

2 THE OPTIMIZATION METHODOLOGY 
TLBO was developed by Rao et al. [8] as a parameter-free metaheuristic algorithm. The 

two phases of education such as the teacher phase done via the guide of a teacher and the stu-
dent phase via self-study are formulated and consequently applied.   

The main optimization process of a constrained engineering problem is given in Fig. 1. Af-
ter the definition of the problem, an initial solution matrix is generated by assigning random 
solutions for the design variables. Then the essential optimization starts. In the analysis stage 
that is done after assigning a set of design variables, design constraints are checked and the 
objective function is penalized if a violation exists. In the present study, the violated solutions 
are assigned as a big value as 106. The optimization process continues for a maximum number 
of iterations as the stopping criteria of the problems. 

In the TLBO, the teacher and learner phases are consequently applied. The comparison of 
the results is done via the value of the objective function.  

The teacher phase is formulated as Eq. (1). TF is called the teaching factor and it can take 
integer number 1 or 2, randomly. In the present study, TF can be real numbers and it is formu-
lated as Eq. (2).   

t 1 t *
i i avex x rand(1)(g TFx )    (1) 

max min
max

(TF TF )TF TF t
max iter

  (2) 
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In Eq. (1), xi
t+1 is the ith set of (t+1)th iteration, while xi

t is the existing one of the tth itera-
tion. A random number between 0 and 1 is shows as rand(1), g* and xave are the best solution 
(teacher) and the average of all solutions. In Eq. (2), TFmax and TFmin are the minimum and 
maximum value of TF. In the present study, TFmax and TFmin are taken as 2 and 1, which are 
limits of classical TLBO method. The maximum iteration number and current iteration num-
ber are shown as maxiter and t, respectively.  

The student phase is formulated in Eq. (3). In this phase, two existing solutions (random 
chosen k and j) are used according to objective function (f(x)).   

)()())(1(

)()())(1(1
t
k

t
j

t
j

t
k

t
i

t
k

t
j

t
k

t
j

t
it

i
xfxfifxxrandx

xfxfifxxrandx
x   (3) 

3 NUMERICAL EXAMPLES 

3.1. COST OPTIMIZATION OF TUBULAR COLUMN UNDER COMPRESSIVE 
LOAD 

The problem that was firstly presented by Rao [9] has six constraints as given in Eqs. (4-9) 
and the objective function is the minimization of the total material and construction cost 
shown as Eq. (10). The design variables are the dimensions of d ant t which are shown In Fig. 
2.  

Figure 2: Tubular column. 
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3.2. WEIGHT OPTIMIZATION OF CANTILEVER BEAM   
The cantilever beam shown in Fig. 3 has 5 design variables (xi for i=1 to 5) and the optimi-

zation objective is formulated as Eq. (11). It is firstly presented by Fleury and Braiban [10]. 
is formulated as Eq. (12). The design 

variables have 0.0.1 minimum and 1000 maximum.      

 
Figure 3: The cantilever beam. 
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4 REUSLTS AND CONCLUSIONS 

The optimum results for the tubular column problem are shown in Table 1. According to 
the results, the modified TLBO is also effective to find the same results as TLBO. Also, the 
average value is the same as the best one for 30 cycles of optimization. It leads to a small 
standard deviation (std) value.  

Table 1: The optimum results of tubular column problem 

TLBO Modified TLBO 
t 0.291965 0.291965 
d 5.451156 5.451156 
f(x) (best)  26.4995 26.4995 
f(x) (ave) 33358.95 26.4995 
std 1.83x105 1.81x10-14 

The classical TLBO has a very big average and std values due to trapping a local optimum 
in one of the optimization cycles. In a cycle, TLBO was not effective to find a final result 
without violating the design constraints and it was penalized. The convergence plot is also 
given for the tubular column problem in Fig. 4. As seen from the plot, modified TLBO has the 
advantage of finding exact optimum results quickly.  

10 0 10 1 10 2

t

26

27

28

29

30

31

32

33

f(x
)

TLBO

Modified TLBO

Figure 4: The convergence plot for the tubular column problem 

The optimum results for the cantilever problem are shown in Table 2. For the cantilever 
beam problem, modified TLBO and classical TLBO have similar results. As seen from Fig. 5, 
the modified TLBO has the same effect that is seen after the 30th iteration.  
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Table 2: The optimum results of cantilever beam problem 

TLBO Modified TLBO 
x1 6.01588339 6.01592868 
x2 5.30936515 5.30929444 
x3 4.49365821 4.49390785 
x4 3.50171404 3.50159740 
x5 2.15303927 2.15293149 
f(x) (best)  1.33995639 1.33995638 
f(x) (ave) 1.33995642 1.33995641 
Std 0.00000003 0.00000003 
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Figure 5: The convergence plot for the cantilever beam problem 

As conclusion, the modification of using real numbers for TF is effective in finding global 
optimum results. The classical version of TLBO is also effective on structural optimization, 
but the optimum results may not be found in a cycle of optimization since it may trap to local 
optimum. Using real numbers for TF eliminates this problem. In this study, the modification 
was tested for benchmark structural engineering problems. This study may be enlarged to the 
more complicated structural design optimization problem.  
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Abstract 

As known, the damping ratio of structures is assumed as a constant value. This constant value 
is also used in the analysis of structures and these analysis results are used in the optimum 
design of active and passive control systems. In the present study, the assumed value of inherent 
damping of the structure is tested on tuned mass dampers that are used in the structures to 
reduce responses resulting from earthquakes. For this purpose, three methods are investigated 
by considering the increase or decrease of the damping coefficient of the superstructure. The 
first method is the usage of equations of  Den Hartog which does not consider the inherent 
dumping of the structure. Secondly, the basic equations of Sadek et al. that include the inherent 
dumping for the optimum parameters are examined. Finally, a metaheuristic-based optimiza-
tion approach using the Jaya algorithm (JA) was used in the investigation.     
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1 INTRODUCTION 
Mass dampers are devices that Hermann Frahm [1] invented in 1909 to prevent machine 

vibration on board, in which Ormondroyd and Den Hartog [2] put forward the first theoretical 
studies for this type of damper. The fact that TMDs became a part of the design took its place 
in architecture with research by Mcnamara [3]. Considering the mass of the structure on which 
TMDs are placed, SDOF has a mass of approximately 5% of the structure for a structure [4-5]. 
Similar to other passive damping systems, these systems, which convert mechanical energy to 
damping energy as a working principle, have become a preferred system for building vibration 
control in terms of not needing external energy, easy cost and maintenance and applicability to 
old buildings. Looking at the areas of use, we can see that the bridge, tower, etc. exposed to 
wind forces. It is seen that it is placed in structures, earthquake-effect structures and in the types 
of structures that are negativized by other vibrations. An example is folded pendulum with a 
movement ampliated capacity of ±48 cm, with a mass ratio of 4.5%, to 450 tons for the 40-
storey Socar Tower (Figure 1 and 2), which was built in 2010, in Baku, capital of Azerbaijan. 
Another example used in TMD, Alphabetic Tower (Figure 3) in Batumi, Georgia, used standard 
TMD with a 3.5% mass ratio of 62.85 tons with a movement amplitude of  ±24cm [6]. 

Figure 1. Socar Tower [7] 

Figure 2. Socar Tower Folded Pendilum TMD [8] 
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Figure 2. Alphabetic Tower [9] 

TMDs are connected to the structure with the help of spring and damper. The most appro-
priate account of the spring and damping parameters found in these devices is important for the 
efficiency of the device. A mode must be defined to the TMD to control the vibration of the 
structure. This defined value must be selected in accordance with the critical frequency of the 
structure. As a result of the theoretical studies carried out by Den Hartog, considering the mass 
ratio of TMD and structure  e with the SDOF structure, the optimum frequency 
(fopt) is given in Equation (1) and the optimum damping ratio d,opt)  is given in Equation (2). 
In the equations, the frequency of the structure is s and the frequency of TMD is d, opt. The 
mass and damping coefficient of TMD is md and cd, respectively. In Equation (3), the stiffness 
coefficient of TMD is accounted for kd.  

= , =
μ

  (1) 

 , =
,

=
( μ)

     (2) 

  = ,     (3) 

Den Hartog developed formulations for optimum damping parameters in his book called me-
chanical vibrations [10]. In the following years, different formulations were produced other 
than these assumptions [11-15]. Besides, Sadek at al. added the natural damping of the structure 
to the formulation. Equations 4 and 5 show these formulas [16].   

= 1    (4) 

       , = +   (5) 

The optimization process has several advantages in terms of its ability to compare multiple 
results at the same time in achieving the design variables. Metaheuristic algorithms using nu-
merical reputations for optimum design variables are a variant of an appropriate optimization 
for the detection of TMD efficiency. There are varieties of metaheuristic algorithms such as 
genetic algorithm (GA) [17-26], Bionic Algorithm [27], Ant colony optimization (ACO) [28], 
Particle swarm optimization (PSO) [29-30], Harmony search algorithm (HS) [31-36], Artificial 
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bee colony optimization (ABC) [37], Teaching-Learning-Based optimization (TLBO) [34, 35, 
38], Flower pollination algorithm (FPA) [34, 35, 39, 40], Bat Algorithm (BA) [41], Jaya Algo-
rithm (JA) [42, 43].    
      In this study, Jaya algorithm optimization and equations of  Sadek et al. [16] and Den Hartog 
[10] are used for a single degree of freedom system (SDOF). Then, the optimum values obtained 
as a result of these 3 methods were compared in case of the change of the damping ratio of the 
structure that is different from the assumed value in the optimization.  

2 DYNAMIC ANALYSIS OF STRUCTURE 
Simulink model was created on MATLAB [44] for optimization. The optimum parameters 

of TMD was calculated and results under earthquake data within the defined time interval 
(0.001) are obtained for far-field ground motion records given in FEMA P-695: Quantification 
of Building Seismic Performance Factors [45]. SDOF model used in the study is shown sche-
matically in Figure 4. The mass, rigidity and damping coefficient of the SDOF structure are 
expressed as m, k and c, respectively. The mass, rigidity and damping coefficient of TMD added 
to the structure is md, kd, cd, respectively and the displacement in structure is shown as x and 
TMD displacement is shown as xd.   

 
Figure 4. The physical model 

 
Ground acceleration is shown by g. The motion equation for the SDOF structure used in the 

study is given in Equation 6.  By including TMD, the equations of the motion of the 2 degrees 
of freedom system are shown as Equations 7 and 8.  

 
                                             + + =                                                                              (6) 

 
                   + ( + ) + ( + ) +  =                                           (7) 
 
                                + + =                                                 (8) 
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3 THE OPTIMIZATION METHODOLOGY 
Using motion equations and TMD parameter calculations from the work of Den Hartog [10] 

and Sadek et al. [16], the main structure and damping parameters were calculated. For the earth-
quake records, which were then excited to the SDOF system, the maximum critical acceleration 
and displacement that will occur in the main structure were determined. The JA [45] developed 
by Rao, a metaheuristic algorithm inspired by victory, was selected for system optimization. 
With the codes prepared on the Matlab, JA was applied to optimize the system and maximum 
acceleration and displacements were obtained for the same earthquake records. The damping 
value of the SDOF structure was increased by 100 between 500-1500 Ns/m and the critical 
displacement and total acceleration values for all earthquake records were determined by the 
oprimum values of Den Hartog, Sadek et al. and JA. It has been computed and tabulated without 
the TMD structure and TMD structure. 

The following is the equation for JA shown as Equation 9. The process of optimization based 
on a random assignment using the best and worst solution for the objective function obtained 
from Rao's work [45].  

 , = , + , ( , )   (9) 

     Xbest and Xworst used to obtain new solutions are the best solution and worst solution, respec-
tively. The expression that randomly assigns between 0 and 1 is written as r1 and r2. The newly 
founded result for the ith solution (Xnew,i) is obtained via the existing one shown as Xold,i. The 
process of generating optimized new solutions and deriving existing solutions is continued for 
the number of iterations. 

4 THE OPTIMUM RESULTS 
For the investigation, the parameters of the SDOF structure are taken as 1000 kg, 120000 

N/m and 1000 Ns/m for m, k, and c, respectively. By using these parameters, the optimum 
results for a 5% mass of TMD are given in Table 1 for different approaches. 

 Table 1: The optimum results. 

Method Den Hartog [10] Sadek et al. [16] JA 
 (kg) 50 50 50 

 (Ns/m) 139.4143 270.2948 79.4850 
 (N/m) 5442.1769 5334.3060 7467.6313 

5 DISCUSSION AND CONCLUSIONS 
The investigation was done by taking 5% less and more of the assumed damping valur with 

100 Ns/m intervals. The displacement and acceleration maximum values are reported in Table 
2 for the critical excitation with the most effect on the structure. This record is the MUL279 
record of the 1994 Northridge earthquake. 

As seen from Table 2, the displacement values are reduced by 30.3%, 37.4% and 42.5% for 
the methods of Sadek et al., Den Hartog and JA, respectively. The reduction percentages for 
the acceleration are 32%, 37.7% and 48.6% for Sadek et al., Den Hartog and JA, respectively. 
It is seen that the best method is the use of optimization algorithms like JA. 
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Table 2: The responses for different damping coefficient values. 

c 
(Ns/m) 

Without TMD 
With TMD 

Sadek et. al. [16] Den Hartog [10] JA 
x (m) x (m/s2) x (m) x (m/s2) x (m) x (m/s2) x (m) x (m/s2) 

500 0.2305 27.6931 0.1486 17.3602 0.1288 15.5914 0.1281 13.4663 
600 0.2177 26.1615 0.1425 16.6482 0.1240 15.0228 0.1211 12.8844 
700 0.2058 24.7464 0.1370 16.0236 0.1199 14.4949 0.1150 12.3404 
800 0.1948 23.4298 0.1321 15.4692 0.1166 13.9941 0.1102 11.8342 
900 0.1846 22.2273 0.1275 14.9393 0.1135 13.5810 0.1056 11.3630 
1000 0.1765 21.2588 0.1231 14.4474 0.1105 13.2404 0.1014 10.9210 
1100 0.1688 20.3615 0.1190 13.9781 0.1076 12.9108 0.0990 10.6213 
1200 0.1616 19.5112 0.1151 13.5300 0.1049 12.5975 0.0968 10.3847 
1300 0.1549 18.7241 0.1114 13.1140 0.1023 12.3001 0.0946 10.1603 
1400 0.1487 17.9807 0.1079 12.7154 0.0998 12.0122 0.0926 9.9429 
1500 0.1427 17.2813 0.1045 12.3343 0.0973 11.7334 0.0906 9.7322 

For the damping values less than the assumed value, the performance of the TMD increases. 
For example, a 51.4% reduction occurs for the acceleration, when c value is the minimum by 
using JA. The opposite can be said for the increasing damping values. By this conclusion, it is 
seen that TMDs are more effective for the system with low inherent damping. Also, TMDs are 
effective when the damping coefficient value is different from the assumed one.    
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Abstract 

Jaya algorithm (JA) is a metaheuristic algorithm that is very simple to use because of its sim-
ple features. One of these simple features is the use of a single phase of optimization. Second-
ly, by the advantage of existing of a single-phase, it is a parameter-free algorithm since a 
switch probability is not needed to select the optimization phase. However, it is a single-phase 
algorithm, it uses both existing best and worst solutions in the update of candidate solutions. 
In the first version of JA, the best and worst solutions are considered with the same weight by 
multiplying with random numbers. In this study, a modified JA is proposed to include the con-
sideration of different weights for best and worst solutions. To not to be dependent on the pa-
rameters and to avoid always decreasing or increasing weight coefficients for the solutions, it 
is adjusted with a sine wave function that is updated via the iteration number. By this modifi-
cation, it is possible to consider an active weight coefficient for both factors. The modified JA 
using sine wave is applied to the tuned mass damper (TMD) optimization problem that reduc-
es the displacement of structures subjected to earthquake excitations. In the optimization pro-
cess, the stroke limitation of TMD is also considered and the optimization is done for a wide 
set of earthquake records. The results of the proposed since wave Jaya (SJA) and JA are 
compared in means of convergence to the optimum results.  

Keywords: Structural Optimization, Jaya Algorithm, Optimization, Metaheuristic Algo-
rithms, Tuned Mass Damper 
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1 INTRODUCTION 
Jaya Algorithm (JA) is a metaheuristic algorithm that was first presented by Rao [1] as a 

single-phase algorithm that is different from the other algorithm generally having two optimi-
zation phases. Like the previously developed Teaching-learning-based optimization by Rao et 
al. [2], it is also a user-defined parameter-free algorithm, but only a phase is used instead of 
two phases such as teaching and learning phases of TLBO. Although JA has a single phase, 
both existing best and worst solutions are used together to provide convergence to the best 
solution, while it diverges from the worst one.  

JA has been applied to many structural optimization problems by using several modifica-
tions. Kayabekir et al. [3] employed JA in the optimization of the amount of carbon fiber-
reinforced polymer (CFRP) that is used to increase the shear capacity of reinforced concrete 
(RC) beams. Dede [4] optimized steel grillage structures by using JA that minimize the 
weight of the structure constrained based on LRFD-AISC. Dinh-Cong et al. [5] used JA for 
damage assessment in plate-like structures. Degertekin et al. [6] developed a JA-based opti-
mization method for sizing, layout, and topology optimization of truss structures. Artar and 
Daloglu [8] optimized seismic excited steel space towers with JA. Maksym et al. [9] em-
ployed JA for optimization of mass of braced dome structures with natural frequency con-
straints. Khatir et al. [10] combined JA and Artificial Neural Network (ANNs) to investigate 
crack identification in plates. Atmaca et al. [11] used JA in the optimization of a single pylon 
cable-stayed bridge that has cable size and pre-stressing force as design variables. Öztürk et al. 
[12] optimized RC counterfort retaining walls by using JA and TLBO. Kaveh et al [13] opti-
mized skeletal structure with discrete variables by improving JA to escape local optima prob-
lem. Degertekin et al. [14] conducted layout optimization under natural frequency constraints 

maz et al. [15] optimized RC retaining walls under static and dynamic loads via JA. 
the 

optimization of RC T-beams via JA.   
 JA was also used in the optimization of structural control system includes tuned mass 

dampers (TMDs) [17-18], active tendon control system using proportional –integral- deriva-
tive (PID) controllers [19-20] and fuzzy controllers [21].  

In the present study, an improved JA is presented and tested on the tuning of TMDs. The 
improvement is done to change the weight of best and worst solutions in the formulation of 
JA. A sine wave is defined to give dynamically changing weights for each iteration. 

2 SINE-WAVE JAYA ALGORITHM  (SJA) 
Jaya means victory in the Sanskrit language and it is victorious to reach the optimum value. 

The equation of JA is given in Eq. (1).   
t 1 t * t w t
i i 1 i 2 ix x r (g | x |) r (g | x |)    (1) 

xi
t represents a set of design variables for the ith individual of tth iteration. xi

t+1 is found via 
using best (g*) and worst (gw) solutions. Two random numbers are represented via r1 and r2. 

In the classical form of JA, g* and gw have the weight, but it is multiplied with a number. 
Also, the weights are always the same for all iterations. For that reason, a sine-wave function 
is applied for the weights of best and worst solutions. After the modification, the equation of 
the proposed SJA is given in Eq. (2). The sine values must be calculated as radian.  

t 1 t * t w t
i i 1 i 2 ix x r | sin(t) | (g | x |) r (1 | sin(t) |)(g | x |)    (2) 
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The flowchart of the optimization process is summarized in Fig. 1. The design constants, 
design variables, objective function and design constraints are given in Section 3. The re-
sponse of structure was found via dynamic analysis in the time-domain in all iterations.   

 

Enter design constants 
and ranges of design 
variables  

Are all 
iterations 
complete? 

STOP 

NO

Generate new solutions according to Jaya 
algorithm rules and calculate objective 
functions of the new solutions  

Replace the old solutions with new ones 

START 

Generate initial solution matrix, calculate 
objective function considering design 
constraints  

YES 

Are new 
solutions better 
than old ones?  

YES 

NO 

Figure 1: The flowchart of the optimization. 
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3 NUMERICAL EXAMPLES 
The design constants and the ranges of design variables are given in Table 1 for a 10-story 

shear building [23]. The structure was subjected to 44 ground motions that are defined as far-
field ground motions in FEMA P-695: Quantification of Building Seismic Performance Fac-
tors [24].  

Table 1: The design constants and variables 

Type Symbol Definition  Value 
Constant mi Mass of ith story 360 t 

ki Stiffness of ith story 650 MN/m 
ci Damping coefficient of ith story 6.2 MNs/m 
md Mass of TMD 180 t 

Variable Td Period of TMD 0.5s-1.5s 
d Damping ratio of TMD 1%-50% 

The objective function of the problem is the minimization of top story displacement (x10) 
of the structure as seen in Eq. (3). It is obtained by solving the equation of motion (Eq. (4)) 
that includes mass (M), stiffness (K), damping (C) matrices, a vector ones ({1}) and ground 
acceleration gx . x(t) defines the response of the structure.  

10f (x) minimize(| x |)   (3) 

gMx(t) Cx(t) Kx(t) M 1 x (t)  (4) 

The optimization problem is also constrained with the function (g1) given as Eq. (5). It is a 
normalized stroke capacity of the TMD to limit its movement. It must be smaller than a user-
defined value called stmax. 

  (5) 

xd is the displacement of TMD with respect to the ground. The design variables are formu-
lated in Eqs. (6) and (7) with respect to mass (md), stiffness (kd) and damping coefficient (cd) 
of TMD.  

  
d

d
d k

m
2T   (6) 

  

d

d
d

d
d

m
k

m2

c (7) 

In the optimization, the classical version of JA and SJA algorithm were compared. 100 
maximum number of iterations are conducted and 10 cycles of optimization are applied. 
stmax is taken as 1. The population number which defines the number of sets of design varia-
bles is taken as 5.   
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4 RESULTS AND CONCLUSIONS 
The maximum displacement of the top story of the structure is 0.410109 m and it is ob-

tained under the BOL090 component of the Bolu record of 1999 Düzce, Turkey earthquake. 
The optimum results of JA and SJA are given in Table 2.  

Table 2: The optimum results 

JA SJA 
Td (s) 0.904560044 0.902517645 

d 0.283683914 0.282289564 
f(x) (best) (m) 0.320240847 0.320235126 
f(x) (ave) (m) 0.323361718 0.322733436 
std 0.004388982 0.003896575 
iteration 38 21 

According to the results, JA and SJA are both effective to reduce the maximum top story 
displacement by 22%. SJA has a slightly smaller objective function, but it has a significantly 
smaller average and standard deviation (std) value than JA. Also, it is possible to find the op-
timum solution in the 21th iteration, while JA needs more iterations to reach the final value. 
The convergence plot for the optimization is presented in Fig. 2. Although JA has a good 
convergence at the start of the optimization process, SJA quickly converges to the final value.  

Figure 2: The convergence plot. 
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Abstract. This paper presents the aerodynamic shape optimization of the MEXICO wind tur-
bine (WT) blade, targeting the maximization of the axial moment and, hence, of the produced
power. The optimization is conducted using the OpenFOAM-based continuous adjoint solver
named adjointOptimisationFoam, developed and made publicly available by the group of au-
thors. This implements and solves the adjoint to the Navier-Stokes system of equations, coupled
with the differentiation of the Spalart-Allmaras turbulence model. Herein, this was extended to
include the adjoint to the flow equations which are solved for the absolute velocity in the rela-
tive reference frame. Challenges in the convergence of the adjoint equations, mostly attributed
to flow unsteadiness causing marginal convergence of the steady flow solver, are treated by
additionally implementing the Recursive Projection Method (RPM). Assessment of the adjoint
sensitivities with finite differences in a similar 2D case is also included. Then, the flow solution
for the MEXICO WT case is compared with the outcome of another CFD solvers and exper-
imental data, prior to the application of the expanded optimization software to maximize the
axial moment of the WT. The blade and the displacement of the surrounding grid nodes are
parameterized using a volumetric B-Splines morphing box. The optimization designed a blade
bended in the axial direction axial moment, having a higher by 10.8%.
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1 INTRODUCTION

Wind energy is a widely used renewable energy source producing green and clean energy [1].

Among other, an increased interest has surfaced on how to decrease the cost of the produced

energy by wind turbines (WTs). This can be achieved by reducing the turbine capital cost

and/or by increasing the annual energy production. Upscaling WTs to have a bigger swept

area is a way to extract more energy, however, this solution affects the structural mechanics of

the WT [2], since mass increases with the cube of the rotor radius. Generally, the design of

WTs is a multidisciplinary trade-off among aerodynamic performance, structural efficiency and

manufacturing cost [3].

Currently, low-fidelity models are often used to design WT blades, because of their low com-

putational cost and simple implementation. Among them, Blade Element Momentum (BEM)

models are the most widely used [4]. Depending on the application however, such a model may

have limited success in accurately capturing viscous flow effects, compressibility and complex

3D patterns; hence, 3D Computational Fluid Dynamics (CFD) software should be used instead.

In other areas, such as aerospace or the automotive industry, CFD-based aerodynamic shape

optimization is used on a regular basis [5, 6]. Similar methods in the wind energy field are

not yet in widespread use. High-fidelity CFD-based shape optimization can be performed with

or without computing the gradient of the objective function. In [7], a WT blade winglet was

optimized using a 3D CFD model and a gradient-free method using two design variables to

increase the moment which, in turn, increased power production by 9%. Increasing the number

of design variables is expected to increase the optimization turn-around time of gradient-free

methods a lot. Gradient-based optimization may overcome this manner as the adjoint method

is the only way to compute the required gradient components at a cost that does not scale with

their number [8, 9]. The first time the adjoint to a RANS equations solver was used to optimize

the lift-to-drag ratio of a WT blade airfoil was in [10].

A few 3D adjoint-based shape optimizations considered modelling the rotation effects. In

one of them [11], the NREL Phase VI rotor was optimized using the RANS equations. The

continuous adjoint to the discrete adjoint to the RANS equations, including the adjoint to the

Spalart-Allmaras turbulence model, was used in [12] to maximize the power of the MEXICO

WT rotor with the flow and adjoint solvers running on GPUs.

In the present work, the aerodynamic shape of the MEXICO WT blade is optimized in order

to increase the axial moment and, thus, power production. The RANS equations are formulated

in the relative reference frame and solved for the absolute velocity. Initially, the CFD analysis of

the MEXICO WT blade is validated with two other CFD solvers and experimental data. A con-

tinuous adjoint formulation is then used to compute the gradient and support the optimization.

The adjoint to the terms emerging from changing the reference frame to the relative one is also

included, along with the differentiation of the Spalart-Allmaras turbulence model. Although

a steady-state RANS solver was used and was sufficient in capturing the main aspects of the

flow, small scale unsteadiness led to oscillating flow solver residuals and, as a result, the adjoint

solver diverged on most optimization cycles. To stabilize the latter and allow an uninterrupted

optimization, the Recursive Projection Method (RPM), developed in [13] for the stabilization

of unstable iterative procedures, was used to support the adjoint method, leading to an increased

axial moment by 10.8%.
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2 Flow and adjoint equations

2.1 Flow (primal) equations

The flow model includes the steady-state RANS equations for incompressible flows, coupled

with the Spalart-Allmaras turbulence model [14]. The flow equations are solved for the absolute

velocity in the rotating reference frame. These equations coincide with those of the Multiple

Reference Frame (MRF) approach, with uniform angular speed � being uniform along the

entire computational domain in our case. The flow equations read

Rp=−∂wj

∂xj

=0 (1a)

Rv
i =wj

∂vi
∂xj

− ∂τij
∂xj

+
∂p

∂xi

+ eijk�jvk=0 , i = 1, 2, 3 (1b)

Rν̃=wj
∂ν̃

∂xj

− ∂

∂xj

[(
ν+

ν̃

σ

)
∂ν̃

∂xj

]
− cb2

σ

(
∂ν̃

∂xj

)2

− ν̃ P (ν̃)+ν̃D(ν̃)=0 (1c)

RΔ=
∂

∂xj

(
∂Δ

∂xj

Δ

)
−Δ

∂2Δ

∂x2
j

− 1=0 (1d)

where vi and wi are the absolute and relative velocity components, respectively (vi = wi +
eijk�j(xk − xc

k) where xk denotes the position vector, eijk stands for the Levi-Civita symbol

and xC
k corresponds to the origin lying on the rotation axis), p is the static pressure divided

by the constant fluid density, τij = (ν+νt)
(

∂vi
∂xj

+
∂vj
∂xi

)
and ν and νt = ν̃fv1 are the constant

bulk and turbulent viscosities. Eq. 1c is solved for ν̃ and terms P (ν̃) & D(ν̃) stand for the

production and destruction terms, respectively, while the rest of terms in Eq. 1c are explained

in [14]. Eq. 1d is the eikonal equation, [15], used to compute distances, Δ, from the nearest

wall, as required by the turbulence model. The objective function to be maximized is the axial

moment coefficient,

J=

∫
SW

rMi eijk(xj − xc
j) (−τklnl + pnk) dS

1
2
lAU2∞

(2)

where rMi is the unit vector in the axial direction. The blade length is l, U∞ is the far-field

velocity magnitude, A is the blade area perpendicular to the flow direction and SW is the blade

surface.

2.2 Continuous adjoint formulation

The first step in the formulation of the continuous adjoint method is the definition and sub-

sequent differentiation of the Lagrangian function

L=J+

∫
Ω

(
uiR

v
i +qRp+ν̃aR

ν̃+ΔaR
Δ
)
dΩ (3)

In Eq. 3, ui denotes the adjoint velocity components, q is the adjoint to the pressure p, ν̃a is the

adjoint turbulence variable and Δa is the adjoint distance. The derivatives of L with respect to

(w.r.t.) the design variables bn, n ∈ [1, N ] , yields

δL

δbn
=

δJ

δbn
+

∫
Ω

(
ui
δRv

i

δbn
+q

δRp

δbn
+ν̃a

δRν̃

δbn
+Δa

δRΔ

δbn

)
dΩ (4)
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where δ
δbn

(.) represents total (or material) derivatives and

δJ

δbn
=

1
1
2
lAU2∞

[ ∫
SW

rMi eijk(−τklnl + pnk)
δxj

δbn
dS−

∫
SW

rMi eijk(xj − xc
j)
δτkl
δbn

nldS

+

∫
SW

rMi eijk(xj − xc
j)(−τkl + pδlk)

δ(nldS)

δbn
+

∫
SW

rMi eijk(xj − xc
j)

δp

δbn
nkdS

]
(5)

Further developing Eq. 4 makes use of δ
δbn

(
∂(.)
∂xj

)
= ∂

∂xj

(
δ(.)
δbn

)
− ∂(.)

∂xk

∂
∂xj

(
δxk

δbn

)
(see [16]), and

the Gauss divergence theorem. Only the differentiation of the continuity equation is shown∫
Ω

q
δRp

δbn
dΩ=

∫
SW

−qnj
δwj

δb
dS

+

∫
Ω

[
∂q

∂xj

δvj
δbn

− ∂q

∂xj

ejlk�l
δxk

δbn
+q

∂vj
∂xk

∂

∂xj

(
δxk

δbn

)
−qejlk�l

∂

∂xj

(
δxk

δbn

)]
dΩ

(6)

In Eq. 6, all terms including the so-called grid sensitivities δxk

δbn
contribute to the sensitivity

derivatives. The rest of integrals in Eq. 3 are expanded similary. Boundary integrals including

flow variations contribute to the adjoint boundary conditions whereas field integrals of the same

quantities contribute to the field adjoint equations.

2.2.1 Field adjoint equations

In order to avoid the computation of variations in the flow variables w.r.t. bn within the field

integrals of the developed form of Eq. 4, the multipliers of these terms are set to zero. Thus, the

field adjoint equations

Rq=−∂uj

∂xj

= 0 (7a)

Ru
i =uj

∂vj
∂xi

− ∂(wjui)

∂xj

−
∂τaij
∂xj

+
∂q

∂xi

+eijkuj�k+ν̃a
∂ν̃

∂xi

− ∂

∂xl

(
ν̃aν̃

CY
Y

emjk
∂vk
∂xj

emli

)
=0 , i=1, 2, 3 (7b)

Rν̃a =−∂(wj ν̃a)

∂xj

− ∂

∂xj

[(
ν+

ν̃

σ

)
∂ν̃a
∂xj

]
+
1

σ

∂ν̃a
∂xj

∂ν̃

∂xj

+2
cb2
σ

∂

∂xj

(
ν̃a

∂ν̃

∂xj

)
+ν̃aν̃Cν̃+

∂νt
∂ν̃

∂ui

∂xj

(
∂vi
∂xj

+
∂vj
∂xi

)
+(−P+D) ν̃a=0 (7c)

RΔa =−2
∂

∂xj

(
Δa

∂Δ

∂xj

)
+ν̃ν̃aCΔ=0 (7d)
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emerge, where τaij = (ν+νt)
(

∂ui

∂xj
+

∂uj

∂xi

)
is the adjoint stress tensor. The Cν̃a , CY and CΔ terms

in Eq. 7c are defined in [17].

2.3 Sensitivity derivatives

After eliminating all other integrals in the developed form of Eq. 4, by satisfying the adjoint

field equations and boundary conditions (omitted here in the interest of space; see [9] for a

detailed derivation), the remaining terms can be computed at a negligible cost and constitute the

sensitivity derivatives of J , which read

δL

δbn
=

∫
SW

τaijnjeikl�k
δxl

δbn
dS+

1
1
2
lAU2∞

[ ∫
SW

rMi eijk(−τklnl + pnk)
δxj

δbn
dS

−
∫
SW

rMi eijk(xj − xc
j)(τkl + pδlk)

δ(nldS)

δbn

]
−
∫
Ω

(
∂q

∂xj

+ ui
∂vi
∂xj

+ ν̃a
∂ν̃

∂xj

)
ejlk�l

δxk

δbn
dΩ

−
∫
Ω

[
q
∂vj
∂xk

+ qejlk�l + uiwj
∂vi
∂xj

+ τaij
∂vi
∂xk

+ uj
∂p

∂xk

+ν̃awj
∂ν̃

∂xk

+

(
ν+

ν̃

σ

)
∂ν̃a
∂xj

∂ν̃

∂xk

−2ν̃a
cb2
σ

∂ν̃

∂xj

∂ν̃

∂xk

+ ν̃aν̃CY
Yq

‖�Y ‖
eqjl

∂vl
∂xk

+2Δa
∂Δ

∂xj

∂Δ

∂xk

]
∂

∂xj

(
δxk

δbn

)
dΩ (8)

where �Y is the flow vorticity.

3 The Recursive Projection Method

Both the primal and adjoint equations are solved in OpenFOAM using a pressure-based

solver. The primal and adjoint solvers are both variants of the standard SIMPLE algorithm [18]

with small modifications. The slow convergence, or even divergence, of SIMPLE-like solvers

is usually related to a difficulty in reducing the primal/adjoint pressure equation residuals. This

difficulty is even more pronounced in cases that exhibit unsteadiness where it is not unusual

for the steady primal solver residuals to marginally converge and then begin to oscillate after a

number of iterations. This is usually accompanied by the subsequent divergence of the contin-

uous adjoint solver; this behavior may be observed even in cases with small-scale unsteadiness

[19]. This issue was observed in the optimisation of the WT and, on a number of optimization

cycles, the use of the RPM was necessary to make the adjoint equations converge.

The RPM is a technique for stabilizing unstable iterative procedures, formally written as

UUU (n+1) = FFF (UUU (n)), where UUU ∈ RM is the array of (primal or adjoint) unknowns and n the

iteration counter. If the largest eigenvalue of the Jacobian matrix FU exceeds unity, such a

scheme is expected to diverge and, on many occasions, the RPM can make such an otherwise

diverging scheme converge. First, the method needs to identify the diverging modes of FU , i.e.

the eigenvectors corresponding to the largest eigenvalues. Once identified, and assuming that

these modes are m in total, they can form a basis Z∈RM×m which is used to split the solution

space RM into two parts: the unstable subspace P∈RM , spanned by the m diverging modes of

FU , and its orthogonal complement Q∈RM . The solution UUU is also decomposed into Up ∈ P

and Uq ∈ Q; the unstable and stable parts of the solution respectively. A stabilized iterative

scheme is thus derived where a Newton iteration is performed on Up while the original scheme

is retained for Uq. This way, the RPM makes a previously diverging scheme converge.

Practically, m is initially zero and gradually grows as diverging and slowly decaying modes

are identified and incrementally appended to Z throughout the solution of the adjoint equations.
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Additionally, Z is approximated using power iterations on an initial matrix estimate (more

details about the implementation of the RPM can be found in [13]). Finally, the new scheme

derived through the RPM becomes stable after all the diverging modes have been identified and

provided that Z has been approximated with sufficient accuracy.

4 Analysis and Optimization of the WT blades

This work presents the aerodynamic shape optimization of a Horizontal Axis Wind Turbine

(HAWT) blade, namely that of the MEXICO WT, associated with the EU project ”Model Rotor

Experiments In Controlled Conditions” [20]. Measurements were performed in the Large Low-

Speed Facility of DNW in the Netherlands [20, 21]. The computational domain Ω includes

one third of the WT disk, with periodic boundary conditions. The CFD domain and mesh are

presented in Fig. 1. The hybrid CFD mesh is generated with ≈ 107 cells using Pointwise.

Figure 1: CFD domain and mesh around the MEXICO WT blade.

4.1 Flow Solver Verification

The wind speed and yaw angle are 10m/s and 0◦, respectively. The pressure coefficient

distribution on a number of different spanwise positions over the blade is shown in Fig. 2.

OpenFOAM-based results are compared with wind tunnel measurements and two other CFD

results. The latter are obtained from the MaPFlow code of the Lab. of Aerodynamics, NTUA

[22] and the GPU-enabled PUMA code (incompressible flow solver) of the Parallel CFD &

Optimization Unit, NTUA [12]. All CFD results are in very good agreement.
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Figure 2: MEXICO WT Blade: Comparison of the pressure coefficient computed by Open-

FOAM, PUMA and MaPFlow with measurements, at four spanwise positions.

It can be observed that pressure on the suction side is underpredicted by all CFD results

and, in those cases, the experimental results are not in good agreement with CFD. A number of

possible reasons for this are mentioned in [23]. On the other hand, all CFD results shown here

and additional ones presented in [23] are in very good agreement.

4.2 Verification of the Sensitivity Derivatives

The adjoint-based sensitivity derivatives are verified against the results of finite-differences

(FDs) in this section. Since FDs are very time consuming due to the need to solve the flow
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equations twice for each design variable, the adjoint-based sensitivity derivatives are verified

on a 2D mixer case, Fig. 3. Adjoint-based sensitivities are in a good agreement with FDs and

can be used in a gradient-based optimization loop.
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Figure 3: 2D mixer: Verification of the adjoint-based sensitivity derivatives with FDs. (a)

Case geometry; blue/red lines correspond to rotating/stationary walls. The grey area indicates

the rotating part of the computational domain, i.e. the part in which additional terms in the

momentum equations, Eq. 1b are introduced. The lattice of control points parameterizing the

rotor is also shown. The coordinates of the control points in red act as the design variables.

(b)-(c) Comparison of the adjoint-based derivatives with FDs for the x and y coordinates of the

control points.

4.3 Wind Turbine Blade Optimization

After validating the flow solver and sensitivity derivatives, the next step includes the opti-

mization of the WT blade to maximize the axial moment coefficient, Eq. 2. The blade was

parameterized using the volumetric B-Splines morphing box presented in Fig. 4. The role un-

dertaken by the RPM within the first optimization cycle is explained in Fig. 5. With a converged

adjoint, optimization ensued and, after 15 cycles, the axial moment coefficient has increased by

10.8%, from 0.2332 to 0.2584.
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Figure 4: MEXICO WT Blade: A 6×12×6 volumetric B-Splines morphing box parameterizes

the blade and part of the mesh. Control points (CPs) in red were allowed to move only in the

axial direction (z); CPs in blue remain frozen during the optimization.
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Figure 5: MEXICO WT Blade: Convergence of the adjoint equations with/without the RPM

(blue/red) within the first optimization cycle. Residuals averaged over the ensemble of equations

are plotted in logarithmic scale.

From Figs. 6, it can be observed that the optimizer has mainly changed the shape of the blade

close to its tip. Smaller changes can also be seen close to the root. Fig. 7 demonstrates that the

optimizer bended the tip towards the axial flow direction and slightly increased the blade yaw

angle at the same position.
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(a) 25% Span (b) 35% Span

(c) 60% Span (d) 82% Span

Figure 6: Comparison of the baseline (magenta) and optimized (green) blade sections at a

number of spanwise positions.

Figure 7: Comparison of the baseline (white) and optimized (green) geometries of the blade, as

seen from its tip.

To get a clearer view on local deformations along the blade span, the cumulative normal dis-

placement of the optimized blade surface is presented in Figs. 8.

(a) Pressure side

(b) Suction side

Figure 8: Cumulative normal displacements of the blade surface. Positive/negative signs

(red/blue) indicate inward/outward displacements.
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The comparison of the pressure coefficient distribution on the blade for the baseline and

optimized geometries is presented in Figs. 9 and 10 for the pressure and suction sides, respec-

tively. Figs. 10a and 10b demonstrate that the largest pressure coefficient difference is at the

middle and upper part of the blade, whereas the pressure coefficient at the leading and trailing

edges does not change significantly w.r.t. the baseline design. For the pressure side of the blade,

Fig. 9a and 9b show that the significant pressure coefficient difference happens at the upper part

of the blade.

(a) Baseline

(b) Optimized

Figure 9: Comparison of the pressure coefficient distribution on the blade pressure side.

(a) Baseline

(b) Optimized

Figure 10: Comparison of the pressure coefficient distribution on the blade suction side.

The pressure coefficient distributions of the baseline and optimized geometries are also plot-

ted in Fig. 11 at a number of spanwise positions. It is evident that the largest increase in the

objective function comes from the tip, whereas the pressure coefficient is almost unchanged

close to its root.
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Figure 11: Comparison of the pressure coefficient of the baseline and optimized blades at four

spanwise positions.

5 Conclusions

This paper presented an application of the publicly available adjointOptimisationFoam,

the adjoint-based optimizer within OpenFOAM developed by the authors, to the optimization of

the MEXICO wind turbine, targeting an increased axial moment coefficient. The capabilities of

the software were enhanced by including the adjoint to the terms taking the rotation of the com-

putational domain into consideration. Convergence difficulties, encountered in the numerical

solution of the adjoint equations, were treated using the RPM which enabled the adjoint solver

to converge and compute the required sensitivities. The application of the extended software

led to an increase in the axial moment coefficient by 10.8%, by mainly bending the blade tip in

the axial direction and changing the blade yaw angle close to the tip.
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Abstract. The optimization of a static mixing device, equipped with baffles to enhance mixing,
is presented. The tubular device includes a fixed number of equidistant baffles and performs
the mixing of two miscible fluids. The optimization aims at redesigning the shape of the baf-
fles by considering two objectives: (a) mixture uniformity at the outlet and (b) total pressure
losses inside the device, both depending on the baffles’ shapes. To parameterize these shapes,
a volumetric B-Splines morphing technique is utilized, adapting the neighboring grid nodes at
the same time. The front of non-dominated optimal solutions in the two-objective space is com-
puted by optimizing different weighted sums of the two objective functions. For the computation
of their gradients, the continuous adjoint method is mathematically formulated, programmed
in OpenFOAM©and used. Compared to previous works by the same research group on the
design of similar mixing devices, the so-called Enhanced Surface Integral (E-SI) continuous
adjoint method is herein developed and used. This computes sensitivity derivatives based ex-
clusively on surface integrals of the primal and adjoint variables, while considering the effect
of grid sensitivities through the formulation and numerical solution of the system of the adjoint
to a Laplacian grid displacement model. The E-SI adjoint has been developed in the past for
single-phase flows and is extended herein to two-phase flow problems.
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1 Introduction

In fluid mechanics, Computational Fluid Dynamics (CFD) codes along with optimization

algorithms can be used to design optimally performing devices. In gradient-based optimization,

the derivatives of the objective function with respect to (w.r.t.) the design variables (also known

as the sensitivity derivatives, SDs) must be computed at the lowest possible cost; to this end, the

adjoint method can be used since it has a cost which does not scale with the number of design

variables.

This paper focuses exclusively on continuous adjoint and refrains from commenting on dis-

crete adjoint. The continuous adjoint method is well formulated in the literature for single-phase

incompressible and compressible flow problems [11, 12], occasionally including the adjoint to

turbulence models [3], and has successfully been used to perform shape and topology optimiza-

tion. Focusing on the application this paper is dealing with, in [1] the continuous adjoint method

to a two-phase flow model for miscible fluids was proposed by the same research group; this

was used for the shape optimization of mixing devices of the same type as the one designed

herein. However, in [1], the development of the adjoint led to SDs being computed without

accounting for the effect of the so-called grid sensitivities. Grid sensitivities are the derivatives

of the nodal coordinates of the computational grid w.r.t. the design variables. Depending on

the adjoint formulation, the SDs may include volume integrals of grid sensitivities; this is the

Field Integral (FI) adjoint formulation. To get rid of grid sensitivities and field integrals in the

SDs, the adjoint to a grid displacement model must be included; this gives rise to the Enhanced

Surface Integral (E-SI) continuous adjoint [2] this paper is dealing with. Both FI and E-SI ad-

joints are equally accurate but the latter is computationally less demanding. A “severed” E-SI

adjoint is also in use [12, 13], without solving the adjoint grid displacement equations; this is

also the approach followed in [1] and may occasionally compute less accurate SDs [2, 4].

Multiphase flows can be found in many industrial simulations. Several industrial multiphase

flow applications include the mixing of two or more distinct phases, which is the interest of

this paper too. Mixing can be performed in devices with motionless compartments, known as

static mixers. These appear in a variety of industrial processes [6, 7], as an alternative to the

use of conventional agitators; in the absence of rotating parts, motionless mixers typically have

lower energy consumption and reduced maintenance requirements. They perform the blending

of the fluids travelling inside them and, if properly designed, deliver a highly homogeneous

mixture at the exit [8]. Mixing of the fluids can be enhanced by motionless parts, such as

baffles, which force the flow to recirculate. Apart from delivering a uniform flow at the exit,

it is also important to keep total pressure drop inside the device as low as possible, to reduce

energy consumption [9].

In view of the above, the optimization of a particular mixing device of cylindrical shape with

two inlets, from which the two fluids enter separately, and a single outlet, is presented. Mixing

of the two fluids is enhanced by six baffles equi-distributed along the axial direction which

affect losses and mixing effectiveness. The optimization aims at re-designing these shapes,

starting from a baseline half-circular shape. A volumetric B-Splines morphing technique is

used to parameterize the shape of the baffles, by also meeting manufacturability constraints.

Two objective functions are used in this paper, namely maximum mixture uniformity at the

exit and minimum total pressure losses inside the device. To compute the derivatives of these

functions, the continuous adjoint method is formulated, programmed in the open-source CFD

toolbox of OpenFOAM©, and used (see an overview of the capabilities of the same optimization

software in [5], presented in the same conference). Compared to [1], the Enhanced Surface
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Integral (E-SI) adjoint formulation is used, in contrast to the severed approach used there. In

the past, the E-SI adjoint has been developed for single-phase flow problems [2] and, in this

paper, is extended to two-phase flow problems for the first time in the corresponding literature.

2 Case and Adjoint-Based Shape Optimization Framework

2.1 Starting Geometry of the Mixing Device

The mixing device this paper is dealing with, consists of a main cylindrical part of length

equal to 0.7m and inner diameter of 0.1m, two inlets, for the two incoming fluids, and a sin-

gle outlet; both inlets and the outlet have an inner diameter of 0.05m. The geometry of the

device is shown in fig. 1; inside the device, six baffles are equally distributed along the axial

direction at a distance of 0.12m from each other, to enhance the mixing of the two phases. In

the reference/baseline geometry, these have a semi-circular shape and every baffle is shifted by

180◦ from the previous one.

2.2 Two-Phase Flow Model - Primal Equations

The two fluids, entering the static mixer, are treated as incompressible, miscible fluids using

the Volume of Fluid (VoF) method [17–19] to account for their interaction. For a laminar

flow, the continuity and momentum equations for two-phase flows coupled with a convection-

diffusion phase transport equation read

Rp=−∂(ρvj)

∂xj

=0 (1)

Rv
i =ρvj

∂vi
∂xj

− ∂ (μεij)

∂xj

+
∂p

∂xi

=0 , i = 1, 2, 3 (2)

Rα=vi
∂α

∂xi

− ∂

∂xj

(
D

∂α

∂xj

)
=0 (3)

where vi are the flow velocity components, p the static pressure and εij =
∂vi
∂xj

+
∂vj
∂xi

the strain

tensor. In eq. 3, α denotes the volume fraction of fluid 1 and D stands for the mass diffusion

coefficient, similarly to Fick’s law of diffusion. Repeated indices imply summation.

The mixture’s density ρ and dynamic viscosity μ are both a linear combination of ρi and μi

(i=1, 2) of the two fluids, i.e.

ρ=αρ1+(1−α) ρ2 (4)

μ=αμ1+(1−α)μ2 (5)

Dirichlet conditions are imposed on vi and α at the two inlets (SI) of the mixer, where α=1 at

Inlet 1 (inlet of the first fluid) and α=0 at Inlet 2 (inlet of the second fluid), along with a zero

Figure 1: Reference geometry of the static mixing device. Left: a view of the external part, with two inlets, from

which two different fluids enter, and a single outlet. Right: perspective view of the six equidistantly placed baffles.
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Neumann condition on p. At the single outlet (SO), zero Neumann conditions are imposed on

both vi and α along with a constant (zero) value for p. Finally, at the solid walls (SW ), a zero

Dirichlet (no-slip) condition is imposed on vi and zero Neumann conditions on p and α.

2.3 Shape Parameterization

A volumetric B-Splines morphing technique is employed to parameterize the shape of the

baffles. Let X ijk
m ,m∈ [1, 3], i∈ [0, I], j∈ [0, J ], k∈ [0, K] be the value of the m−th coordinate

in the cylindrical system of the ijk− th control point in the 3D control grid. These values

constitute the design variables of the problem, i.e. the optimization unknowns. The cylindrical

coordinates x=[r, θ, z] of the grid points residing within the morphing lattice are given by

xm(u, v, w)=Ui,pu(u)Vj,pv(v)Wk,pw(w)X
ijk
m (6)

where u = [u, v, w] denotes the grid parametric coordinates. U, V,W are the B-Splines basis

functions and pu, pv, pw their corresponding polynomial degree, which may be different per

control point direction. A single control lattice parameterizing the shape of a single baffle, as

well as the grid points neighboring to the same baffle, is presented in fig. 2.

2.4 The Continuous Adjoint Method

In what follows, bn,n ∈ [1, N ] is used to denote the design variables. Two objective func-

tions to be minimized, are considered. The first one expresses the volume-averaged mixture

uniformity at the outlet of the device, written as

JU =
1

2

∫
SO

vini(α− α)2dS , α =
1

|SO|

∫
SO

αdS (7)

where ni are the components of the unit normal vector pointing outwards of the flow domain

and α is the mean value of the volume fraction computed at the outlet. The second objective

function is the volume-averaged total pressure losses between the inlet(s) and the outlet,

JP = −
∫
SI,O

vini

(
p+

1

2
ρv2j

)
dS (8)

The derivatives of the two objective functions w.r.t. the design variables bn are computed and

used to minimize their weighted sum

J=w1JU+w2JP (9)

Figure 2: A control grid consisted of 7 points

in the radial direction, 7 points in the periph-

eral direction and 5 points in the mixer’s lon-

gitudinal direction, used to parameterize the

shape of a single baffle. Control points in blue

remain fixed during the optimization. Those

in red, are active and may change the baffle’s

shape.

59



N. Galanos, E.M. Papoutsis-Kiachagias, and K.C. Giannakoglou

∂jSi

∂p
ni

∂jSk

∂vi
nk

∂jSi

∂α
ni

JU 0
1

2
(α− α)2 nkδ

k
i vini (α− α)

JP −vini −
(
p+

1

2
ρv2j

)
nkδ

k
i −ρvknkvi −vini

1

2
ρΔv

2
j

Table 1: Derivatives of integrands jSi
of the two objective functions w.r.t. the flow variables.

where w1,w2 are user-defined weights. By performing a number of single-objective runs with

different sets of weights, the front of non-dominated solutions in the objective space can be

computed. To facilitate the development of the adjoint, J is written in the form of two surface

integrals along SI and SO, as follows

J=

∫
SI

jSI,i
nidS+

∫
SO

jSO,i
nidS (10)

Using
δΦ

δbn
=

∂Φ

∂bn
+

∂Φ

∂xk

δxk

δbn
to link the total derivative

δ

δbn
of any flow quantity Φ w.r.t. bn, the

partial derivative
∂

∂bn
and grid sensitivities

δxk

δbn
, the differentiation of eq. 10 w.r.t. bn gives

δJ

δbn
=

∫
SI,O

∂jSi

∂bn
nidS+

∫
SI,O

∂jSi

∂xk

δxk

δbn
nidS+

∫
SI,O

jSi

δ (nidS)

δbn
(11)

where (see, also, table 1)

∂jSi

∂bn
ni=

∂jSk

∂vi

∂vi
∂bn

nk+
∂jSi

∂p

∂p

∂bn
ni+

∂jSi

∂α

∂α

∂bn
ni (12)

The development of the E-SI adjoint starts by defining the Lagrangian

L=J+

∫
Ω

qRpdΩ+

∫
Ω

uiR
v
i dΩ+

∫
Ω

ψRαdΩ+

∫
Ω

mα
i R

m
i dΩ (13)

where q is the adjoint pressure, ui are the components of the adjoint velocity and ψ is the adjoint

volume fraction. Apart from integrals including the equations pertaining to the two-phase flow,

L also includes grid displacement PDEs to account for variations in the nodal coordinates of

the computational grid due to the changes in the design variables. Herein, a Laplace type grid

displacement model, as firstly proposed in [2] for single-phase flows, is assumed

Rm
i =

∂2mi

∂x2
j

=0 , i = 1, 2, 3 (14)

where mi denote grid nodal displacements and mα
i their adjoint. The fact that eqs. 14 are

included in L does not imply that this model should necessarily be used to displace the internal

grid nodes during the optimization. This is just a convenient, though harmless, assumption

(see [15]) made during the development of the E-SI adjoint.

Differentiating L w.r.t. bn gives

δL

δbn
=

δJ

δbn
+

∫
Ω

q
∂Rp

∂bn
dΩ+

∫
Ω

ui
∂Rv

i

∂bn
dΩ+

∫
Ω

ψ
∂Rα

∂bn
dΩ+

∫
Ω

mα
i

∂Rm
i

∂bn
dΩ

+

∫
S

(qRp+uiR
v
i +ψRα+mα

i R
m
i )

δxk

δbn
nkdS

(15)
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where the last term emerges from the application of the Leibniz integral rule. The rest of the

integrals appearing on the r.h.s. of eq. 15 can further be developed using the Gauss divergence

theorem and
∂

∂bn

(
∂Φ

∂xj

)
=

∂

∂xj

(
∂Φ

∂bn

)
, according to which spatial and partial derivatives

w.r.t. bn permute. The mathematical development of the first three volume integrals can be

found in [1]. The last volume integral on the r.h.s. of eq. 15 becomes∫
Ω

mα
k

∂Rm
k

∂bn
dΩ=

∫
S

mα
knj

∂

∂xj

(
δxk

δbn

)
dS−

∫
S

∂mα
k

∂xj

nj
δxk

δbn
dS+

∫
Ω

∂2mα
k

∂x2
j

δxk

δbn
dΩ (16)

2.4.1 Adjoint Equations

To avoid the computation of partial derivatives of p, vi and α w.r.t. bn in the interior of the

flow domain, their multipliers inside field integrals in (the developed form of) eq. 15 are set to

zero, giving rise to the adjoint set of PDEs, which take the following form (being the same in

both the E-SI and FI adjoint formulations)

Rq=−∂ui

∂xi

=0 (17)

Ru
i =ρuj

∂vj
∂xi

− ∂(ρvjui)

∂xj

−
∂
(
μεαij

)
∂xj

+ρ
∂q

∂xi

+ψ
∂α

∂xi

=0 , i = 1, 2, 3 (18)

Rψ=−∂ (vjψ)

∂xj

− ∂

∂xj

(
D

∂ψ

∂xj

)
+ρΔ

(
vi

∂q

∂xi

+ uivj
∂vi
∂xj

)
+μΔ

∂ui

∂xj

εij=0 (19)

where ρΔ=ρ1−ρ2, μΔ=μ1−μ2 and εαij=
∂ui

∂xj
+

∂uj

∂xi
is the adjoint strain tensor.

The surface integrals arising from the use of the Leibniz integral rule are transformed to

volume integrals of
δxk

δbn
, [2], according to

∫
S

ΨR
δxk

δbn
nkdS =

∫
Ω

Ψ
∂R

∂xk

δxk

δbn
dΩ, where Ψ =

{q, ui, ψ} denotes every adjoint variable and R = {Rp, Rv
i , R

α} the residual of the corre-

sponding primal problem. By expanding these terms and eliminating the multipliers of
δxk

δbn
,

to avoid their computation in the interior of the domain, the adjoint grid displacement PDEs

arise, namely

Rmα

k =
∂2mα

k

∂x2
j

− ∂

∂xj

{
q
∂ (ρvj)

∂xk

−ρuivj
∂vi
∂xk

−uj
∂p

∂xk

+ui
∂ (μεij)

∂xk

−μεαij
∂vi
∂xk

−ψvj
∂α

∂xk

−D
∂ψ

∂xj

∂α

∂xk

+Dψ
∂2α

∂xk∂xj

}
=0 , k = 1, 2, 3

(20)

2.4.2 Adjoint Boundary Conditions

The field adjoint equations are associated with the following boundary conditions:

• Inlets (SI): Zero Dirichlet and zero Neumann conditions are imposed on ψ and q, respec-

tively. For the normal component of the adjoint velocity u〈n〉 =−∂jSI,i

∂p
ni, whereas the

tangential components are set to zero uI
〈t〉=uII

〈t〉= 0.
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• Outlet (SO): A Robin condition −ρΔqvini−μΔuiεijnj+ψvjnj+D
∂ψ

∂xj

nj+
∂jSO,j

∂α
nSO,j

=0 is

imposed on ψ. Dirichlet conditions of the form q=u〈n〉v〈n〉+2ν
∂u〈n〉
∂n

+
1

ρ

∂jSO,k

∂vi
nSO,k

ni and

v〈n〉u〈t〉+ν

(
∂u〈t〉
∂n

+
∂u〈n〉
∂t

)
+
1

ρ

∂jSO,k

∂vi
nSO,k

ti=0 are imposed on q and ui, respectively.

• Solid Walls (SW ): A zero Dirichlet boundary condition is imposed on ui along with zero

Neumann conditions on ψ and q.

On the adjoint grid displacement fields mα
i , a zero Dirichlet condition mα

k =0 is imposed along

all the boundaries of the domain.

2.4.3 Sensitivity Derivatives

After satisfying the adjoint field equations and their boundary conditions, the remaining

terms in (the developed form of) eq. 15 stand for the E-SI adjoint SDs, namely

δJ

δbn

∣∣∣∣
E−SI

= −
∫
SW

[(
−ρqni + μεαijnj

) ∂vi
∂xj

nk+
∂mα

k

∂xj

−Dψ
∂2α

∂xk∂xj

]
δxk

δbn
njdS

+

∫
SW

Dψ
∂α

∂xj

δnj

δbn
dS

(21)

3 On the accuracy of the Sensitivity Derivatives using the Adjoint Formutations

Before proceeding to the application of the proposed method, two studies are carried out

to demonstrate (a) the accuracy of the computed derivatives using the adjoint method and (b)

the advantages of solving the adjoint to the grid displacement model PDEs accordingly to the

E-SI adjoint formulation. In both studies, the flow Reynolds number is � 350 and the flow

is assumed to be laminar. Also, the properties of the two fluids under consideration remain

the same (see table 2) with the diffusion coefficient D = 1.5 ·10−7m2/s. For the purpose of

comparison, SDs are computed using both the E-SI and severed E-SI adjoints; in the latter, also

abbreviated as SI adjoint, the contribution of the adjoint grid displacement field is omitted from

the SDs. Adjoint sensitivities are, also, compared to Finite Differences (FDs).

Firstly, SDs are computed for JP (eq. 8) in two different 2D geometries/cases. Regarding

case 1, a 2D duct with two inlets, from which two different fluids enter the domain, is con-

sidered; case 2 pertains to a 2D U-bend duct, the inlet of which is split in half for the two

incoming fluids. About 140K and 84K cells, respectively (see fig. 3) were used in each case;

both grids are adequately stretched close to the wall in order to resolve the flow boundary layers.

B-Splines morphing lattices parameterized the duct’s convergent part in case 1 and the duct’s

U turn in case 2. In fig. 3, the control boxes used in each case are demonstrated. The SDs of

JP w.r.t. the displacements of the active control points in the x and y direction, are computed

and plotted in fig. 4. SDs computed based on the E-SI adjoint formulation perfectly match FDs.

Exceptionally, in both cases, the SDs based on the SI adjoint (i.e. by omitting the solution of the

adjoint grid displacement PDEs) are quite accurate. However, this is a conclusion that cannot

be generalized.

Additionally, in case 2, SDs are computed for a different objective function, namely the mean

value of α at the exit

Jα=
1

|SO|

∫
SO

αdS (22)
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Figure 3: Computational grids and volumetric B-Splines morphing lattices used. Left: Case 1, 2D duct with two

inlets. Right: Case 2, U-bend duct. None of these cases includes baffles.

Fluid 1 Fluid 2

Density (kg/m3) 1500 1300
Kinematic viscosity (m2/s) 1.5·10−5 1.3·10−5

Table 2: Properties of the two fluids.

The goal of this study is to investigate the accuracy of the computed SDs for a function that

depends solely on α and includes surface integrals only at the exit of the domain, similarly to

JU (eq. 7). According to fig. 5, SDs computed based on the E-SI adjoint match almost perfectly

those computed with FDs, whereas the severed approach of SI adjoint results in quite wrong

SDs for some design variables.

From these studies, the following conclusions can be reached: for the JP objective, both

E-SI and SI adjoints result in the same SDs that also match those computed with FDs, provided

that a sufficiently fine grid is used. For the Jα objective, however, SI adjoint may compute

inaccurate (or, even, wrongly signed for some design variables) results, as seen in fig. 5. Note

that both E-SI and SI adjoints are almost equally fast, since the cost of solving the adjoint grid

displacement PDEs (eqs. 20) is negligible compared to the cost of solving the primal and the

other adjoint equations.

4 Results

The case geometry is described in section 2.1. Two fluids, with different properties, enter

the mixing device, each one from a different inlet. The density and kinematic viscosity of the

two fluids are those already presented in table 2. Both fluids have uniform inlet velocity profiles

of magnitude 0.1m/s at their corresponding inlets; the Reynolds number of the flow, based on

the mean value of the viscosity of the two fluids and the duct’s inner diameter, is � 715 and a

laminar flow is assumed. An unstructured hexahedral-based grid consisting of approximately

1.1 M cells is used; the grid is sufficiently refined, especially around the baffles, in order to

resolve boundary layers and local recirculations. The flow streamlines, colored by the velocity

magnitude, in the reference geometry of the static mixer are shown in fig. 6

The optimization aims at redesigning the shape of each baffle, separately, while the main

cylindrical body should remain fixed. Two different approaches for parameterizing the shape

of the baffles, namely Node Based Parameterization and Positional Angle Parameterization, are

presented in [1]. Herein, a third approach is followed. In specific, each baffle is enclosed by
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Figure 4: Derivatives of JP w.r.t. the x (left) and y (right) control points’ coordinates, using the SI and E-SI

adjoints along with FDs for Case 1 (top) and Case 2 (bottom).
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Figure 5: Case 2: derivatives of Jα (eq. 22) w.r.t. the x (left) and y (right) control points’ coordinates, using the SI

and E-SI adjoints along with FDs.

a single volumetric B-Splines morphing lattice (see fig. 2), which is used to parameterize its

shape but, also, the part of the grid residing within its boundaries. The cylindrical coordinates

of the control points of the morphing lattices constitute the design variables of the problem. To

retain the baffles’ thickness for the purpose of manufacturability, the control point coordinates

along the axial direction remain fixed. It is important to ensure that grid points existing along

the cylindrical body of the duct are not subject to deformations, and that the first row of grid

nodes of the baffles remain attached to the circumference of the duct. This issue can easily be

addressed by keeping all control points on the outer-most radius of the control lattice fixed.
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Figure 6: Stream-lines colored by the velocity magnitude in the reference geometry.

w1 1 0.5 0.25 0.2 0.1 0

w2 0 0.5 0.75 0.8 0.9 1

Table 3: Weight combinations used in the objective function J (eq. 10).

The E-SI adjoint formulation (eq. 21) is used to compute the derivatives of the weighted

objective function (eq. 10) w.r.t. the coordinates of the control points. For six weight combi-

nations, see table 3, the Pareto front of non-dominated solutions in the two-objective space is

computed and plotted in fig. 7; there, the values of JU and JP have been divided by the known

volume flow rate.

As shown in fig. 7, minimization of total pressure losses and maximization of the mixture’s

uniformity at the exit are two contradictory targets. For instance, in case with w1 = 1, w2 = 0,

the optimization leads to a huge increase in uniformity (decrease in JU ) by 94% at the exit,
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Figure 7: The front of non-dominated optimal solutions in the two objective space computed by the six weight

combinations of table 3.
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(a) w1 = 1, w2 = 0 (b) w1 = 0.5, w2 = 0.5 (c) w1 = 0.25, w2 = 0.75

(d) w1 = 0.2, w2 = 0.8 (e) w1 = 0.1, w2 = 0.9 (f) w1 = 0, w2 = 1

Figure 8: Optimal baffle shapes for each of the six different weight combinations. The baffles are colored by the

magnitude of the nodal displacements w.r.t. the reference geometry.

(a) w1 = 1, w2 = 0 (b) w1 = 0.5, w2 = 0.5 (c) w1 = 0.25, w2 = 0.75

(d) w1 = 0.2, w2 = 0.8 (e) w1 = 0.1, w2 = 0.9 (f) w1 = 0, w2 = 1

Figure 9: Volume fraction distribution at the exit of the optimized device, for each one of the six weight combina-

tions.

whereas total pressure losses have increased by 9.6% compared to the reference geometry. On

the other hand, using w1=0, w2=1 leads to a 34% reduction in total pressure losses, at the cost

of a slightly lower uniformity at the exit, compared to the reference point.

Fig. 8 shows the final shapes of the six baffles resulting from the optimization for each value-

set of weights. By laying emphasis on the minimization of total pressure losses, i.e. working

with higher values of w2, the optimization process leads to the reduction of the baffles cross-

sectional area, in order to prevent flow recirculations. Eliminating JU from the objective func-

tion has a negative effect on the mixing effectiveness of the device, see fig. 7.

On the other hand, if priority is given to maximize uniformity at the exit, the optimization

tends to create baffles of increased surface and wiggly shape at their tips. By doing so, the

vortical structure behind the baffles becomes pronounced helping mixing even more. This is

demonstrated in fig. 12 where the tangential component of the velocity is plotted at a cross-

section of the static mixer for the reference geometry and the one with the best uniformity. Fig.

9 demonstrates the volume fraction α distribution at the exit for each Pareto point. In addition,

figs. 10 and 11 show the flow streamlines colored by the value of volume fraction and total

pressure, respectively. In both figures, streamlines are plotted in the reference and optimized

geometries corresponding to the two extreme points of the front of non-dominated solutions.
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Figure 10: Stream-lines colored by the value of the volume fraction α for the reference (left), and the optimized

geometry for min. JU (right).

Figure 11: Stream-lines colored by the value of the total pressure for the reference (left), and the optimized

geometry for min. JP (right).

Figure 12: Velocity vectors lying on a cross-section at the middle of the static mixer’s length in the reference (left)

and optimized for mixture uniformity (right) geometries. In the latter, a highly vortical flow that enhances mixing

appears.

5 Conclusions

In this paper, the continuous adjoint method to a two-phase flow model for laminar flows

was utilized for the optimization of a mixing device with baffles. Previous works [1], also

conducted by the authors’ group, where the “severed” adjoint approach was followed, were

herein extended, in order to account for the effect of grid sensitivities during the computation
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of SDs. The Enhanced-SI (E-SI) adjoint formulation was presented and, then, was used for the

optimization of the baffles’ shapes by considering two objectives, namely minimization of total

pressure losses and maximization of the mixture’s uniformity at the exit. First, two studies were

conducted in order to assess the accuracy of the computed SDs using the two adjoints, with a

reasonable computational cost. There, it was shown that the E-SI and SI adjoints may differ

depending on the objective function, with the former computing SDs in good agreement with

FDs and the latter occasionally deviating from them.

Regarding the static mixer problem, six optimization runs were performed in total, each of

which resulted to optimal baffles of different shapes; the parameterization scheme used, namely

a volumetric B-Splines morphing technique, ensured that the baffles’ thickness remained fixed

during the optimization and their peripheral part remained attached to the body of the mixer.

So, the Pareto front of non-dominated solutions in the two-objective space was generated. Each

optimal baffle configuration pertains to a single Pareto point; the two extreme points, in spe-

cific, indicate two different mechanisms for improving mixing performance and decreasing total

pressure losses which are, in fact, contradictory goals. To conclude, a highly uniform mixture

at the exit requires wiggly baffles that tend to increase the flow vorticity, whereas decreasing

total pressure drop is achieved by creating smaller baffles to minimally disturb the flow.
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Abstract. This paper addresses the aeroacoustic shape optimization of a 3D aero-engine
intake by means of gradient-based optimization assisted by continuous adjoint. A hybrid aeroa-
coustic model based on the (U)RANS equations and the permeable version of the Ffowcs
Williams-Hawkings (FW-H) acoustic analogy in the frequency domain is used. The flow and
adjoint simulations are for compressible fluid flows realized using the in–house GPU–enabled
software PUMA. The continuous adjoint formulation includes the differentiation of the Spalart–
Allmaras turbulence model. The implementation and differentiation of the 3D FW–H analogy
are verified by comparing the results of the FW–H analogy to both analytical solutions and
URANS. In order to save computational cost, periodic boundary conditions are used to reduce
the solution domain size together with the use of a moving reference frame which leads to steady
flow and adjoint runs. The generatrix of the nacelle lips and the throat area are parameterized
using NURBS. The developed tool is used to perform shape optimization to minimize the total
energy contained in the spectrum of the sound pressure, at prescribed receiver locations.
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1 INTRODUCTION

The design of future aircraft engines and their components is a long, tedious and complicated

process, involving many scientific and technical disciplines such as aerodynamics, thermody-

namics, structural mechanics and acoustics, to name a few. Among them, the acoustic perfor-

mance is becoming increasingly important due to ever stricter regulations related to airframe

and engine emitted noise. The design trend for future civil aircraft engines is towards high and

ultra high by-pass ratio engines, for which the blade tips of the large diameter fan are a very

important source of noise generation. In addition, the design of the intake is of paramount im-

portance since it is responsible for providing a uniform air supply to the engine while, at the

same time, regulating the fan noise propagation towards far–field. This paper focuses on the

latter.

Efficient gradient–based optimization relies upon adjoint methods, as the cost of the sensi-

tivity computation is independent of the number of design variables [1]. Adjoint methods have

been a major research topic in aerodynamic shape optimization [8, 12], recently also penetrating

into the field of acoustic noise reduction [2, 3, 4, 9]. This is mainly due to the unsteady nature

of the acoustic problems requiring a time–accurate adjoint solver which, increases memory re-

quirements as the adjoint equations must be solved backwards in time. So far, mostly discrete

adjoints are used in aeroacoustic shape optimization [2, 3, 4]. In one of the first works on the

use of adjoint to hybrid acoustic models, [2] turbulent blunt trailing edge noise is reduced by

means of the discrete adjoint to the URANS/FW–H analogy. In [9], the continuous adjoint was

developed for URANS/FW–H analogy which was tested for pitching airfoils in inviscid flow.

With reference to engine–intakes, the continuous adjoint to the linearized Euler equations to

optimize the shape of a turbofan inlet duct, can be found in [5].

Herein, an aeroacoustic shape optimization method is developed for an aero–engine in-

take. This is based on the in–house GPU–enabled CFD software PUMA [6] which solves the

(U)RANS equations and extends its continuous adjoint solver initially developed for aerody-

namic shape optimizations. The primal and adjoint problems are solved on a cluster of GPUs,

exploiting the CUDA environment as well as the MPI protocol for communications among dif-

ferent computational nodes. The sensitivity derivatives computation accounts for variations in

turbulence quantities w.r.t. shape changes as it also solves the adjoint to the Spalart–Allmaras

turbulence model.

The primal and adjoint solver of PUMA have recently been extended to computational aeroa-

coustics (CAA) using the FW–H analogy [9]. The hybrid (U)RANS/FW–H model and its ad-

joint counterpart have been implemented in PUMA based on the permeable version of the FW-H

acoustic analogy in the frequency domain. This model provides the sound pressure at the re-

ceivers by computing a low–cost surface integral which depends on flow field data.

In this paper, the developed method is used to optimize the shape of an aero–engine intake,

Fig. 1, by minimizing the total energy contained in the sound pressure spectrum at a set of

receivers. A NURBS model is used to parameterize the shape of the nacelle lips and the throat

area of the engine.

2 HYBRID ACOUSTIC MODEL

2.1 CFD Analysis Tool

The in–house GPU–enabled software PUMA is used to numerically solve the 3D (Un-

steady) Reynolds-Averaged Navier-Stokes ((U)RANS) equations, [6]. This is based on a vertex-

centered finite volume technique for the spatial discretization on unstructured grids and the

71



M. Monfaredi, V. Asouti, X. Trompoukis, K. Tsiakas and K. Giannakoglou

Figure 1: Perspective view of the engine intake with a snapshot of isobar contours at the engine

inlet, serving as instantaneous boundary condition.

upwind second–order Roe approximation for the convection terms. The Spalart–Allmaras tur-

bulence model [7] is used. The software implements mixed–precision arithmetics according

to which the Jacobian of the residuals is computed in double– but stored in single–precision

which speeds up the computations and reduces the required GPU memory, without damaging

accuracy.

2.2 Noise Propagation Using The FW–H Analogy

Acoustic analogies propagate the flow–generated sound by means of analytical solutions

of the wave equation and this leads to a considerable reduction in computational cost [10].

The mathematical formulation of the permeable version of the FW-–H analogy, used herein,

originates from [11] for cases with a uniform mean flow (as in a wind tunnel), and reads(
∂2

∂t2
+u∞iu∞j

∂2

∂xi∂xj

+ 2u∞i

∂2

∂xi∂t
−c2∞

∂2

∂xi∂xi

)
(H(f)ρ′)=

∂

∂t
(Qδ(f))− ∂

∂xi

(Fiδ(f)) (1)

where H(f) and δ(f) are the Heaviside and Dirac delta functions, respectively. Values f=0
indicate the user–defined FW–H surface which should include all acoustic sources. Practically,

f is the signed distance from this surface, with negative and positive values corresponding to its

interior and exterior, respectively. The FW–H surface is located in the part of the grid which is

not displaced during the optimization. c∞ and �u∞ are the sound speed and velocity at far–field.

The quadrupole effects have not been included due to their small effect and the disproportionate

high computational cost. Only monopole (Q) and dipole (Fi) source terms

Q(�x, t) = (ρui − ρ∞u∞i)n
FWH

i

Fi(�x, t) =
[
ρ (ui − 2u∞i) uj + ρ∞u∞iu∞j + pδij − τij

]
nFWH

j

(2)

are retained. ρ = ρ∞+ ρ′, p = p∞+ p′ and ui = u∞i+u′
i are the density, pressure and velocity

components, respectively, and the subscript ∞ indicates far–field quantities. �nFWH is the outward

unit vector normal to the FW–H surface.

72



M. Monfaredi, V. Asouti, X. Trompoukis, K. Tsiakas and K. Giannakoglou

The integral solution to eq. 1 provides the acoustic pressure at a receiver located at �xr. For

each frequency (ω) value, this yields

H(f)p̂′(�xr, ω) =−
∫

f=0

F̂i(�xs, ω)
∂Ĝ(�xr, �xs, ω)

∂xsi

ds−
∫

f=0

iωQ̂(�xs, ω)Ĝ(�xr, �xs, ω)ds (3)

where the hat ˆ symbol indicates quantities after transformation into the frequency domain using

Fourier transform, i is the unit complex number and �xs denotes position vectors of sources

located on the FW–H surface. In subsonic flows, the Green function for 3D problems in the

frequency domain is

Ĝ(�xr, �xs, ω) = −exp(−ikr+)

4πr∗
(4)

where k = ω/c∞ is the wave number and

r+ =
1

β2

(
r∗ − �u∞ · �r

c∞

)
, r∗ =

√(�u∞ · �r
c∞

)2

+ |�r|2 β2, �r = �xr − �xs (5)

Also, β =
√
1−M2 where M is the Mach number.

3 CONTINUOUS ADJOINT TO THE HYBRID ACOUSTIC MODEL

The aeroacoustic objective function J is defined in the frequency domain as the energy con-

tained in the sound spectrum

J =
1

Nr

Nr∑
a=1

∫
ω

|p̂′(�xra , ω)|dω (6)

where p̂′(�xra , ω) is the outcome of eq. 3 and Nr is the number of receivers. |p̂′| =
√
p̂
′2
Re + p̂

′2
Im,

where subscripts Re and Im denote the real and imaginary parts of complex variables. For the

purpose of this study, integration in eq. 6 degenerates to a single frequency value, namely that

of the main (tonal) frequency.

To formulate the adjoint problem, an augmented objective function is defined as Jaug = J +∫
Ts

∫
Ω

ΨnRndΩdt, where Ψn, Rn and Ω are the adjoint variable fields, the residuals of the unsteady

flow including Spalart–Allmaras turbulence model equations and the CFD domain, respectively.

Ts is the time window of the unsteady solution. By differentiating Jaug w.r.t. design variable

be (e=1, N with N being the number of design variables) and setting the multipliers of the

derivatives of the flow variables w.r.t. be equal to zero within the field and along the boundaries,

the unsteady adjoint equations and their boundary conditions are obtained as (only for the mean–

flow equation; for the adjoint to the Spalart–Allmaras model, the reader should refer to [13])

−∂Ψm

∂t
− ∂f inv

nk

∂Um

∂Ψn

∂xk

−
(∂τadjqk

∂xk

− ∂Ψ5

∂xk

τkq

) ∂uq

∂Um

− ∂qadjk

∂xk

∂T

∂Um

− ∂J

∂Um

δ(f) = 0 (7)

where Um, T and f inv
nk are the conservative flow variables, temperature and inviscid fluxes,

respectively, and

τadjmk = (μ+ μt)

[
∂Ψm+1

∂xk

+
∂Ψk+1

∂xm

+
∂Ψ5

∂xm

uk +
∂Ψ5

∂xk

um − 2

3
δmk

(
∂Ψl+1

∂xl

+
∂Ψ5

∂xl

ul

)]
qadjk = Cp

(
μ

Pr
+

μt

Prt

)
∂Ψ5

∂xk
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The last term in eq. 7 is defined only along the permeable FW–H surface. For the differentiation

of this term one should refer to [9]. The adjoint boundary condition along the solid walls is

Ψm+1nm = 0, where �n is the unit normal to the wall. Also, qadjk nk = 0 is imposed along the

adiabatic walls. The sensitivities of J w.r.t. design variables can be computed as

δJ

δbe
=−

∫
Ts

∫
Ω

[
Ψn

(∂f inv
nk

∂xi

− ∂f vis
nk

∂xi

)
+ τadjmk

∂um

∂xi

+ qadjk

∂T

∂xi

] ∂

∂xk

(δxi

δbe

)
dΩdt

+

∫
Ts

∫
S

(pΨk+1 −Ψnf
inv
nk +Ψ5qk +Ψ5umτmk)

δnk

δbe
dSdt

(8)

where f vis
nk and τmk are the viscous fluxes and stresses.

3.1 Verification of the FW-H Analogy Implementation

In the past, the implementation of the FW-H analogy in PUMA has been verified for 2D

cases [9]. In this section, the implementation is verified in a 3D problem. To do so, results of

the FW-H integral, eq. 3, are compared with the analytical solution of the sound field generated

by a monopole source in a uniform flow. Additionally, in order to verify the part of the code

that differentiates the FW–H integral, derivatives of the objective function, eq. 6, w.r.t. the

coordinates of the monopole source, �xs, are computed by the code and compared with the

outcome of a central second–order finite difference (FD) based on the analytical solution. The

monopole source is located at the origin of the coordinate system and is exposed to a uniform

flow u∞ along the +x direction, shown in 2a. The complex velocity potential of the case is

φ(�xr, �xs, ω) = A exp(iωt)
exp(−ikr+)

4πr∗
(9)

where r+ and r∗ are the same as in eq. 5 . The perturbation fields of flow variables are obtained

from the real parts of p′=−ρ∞(∂φ
∂t
+u∞1

∂φ
∂x
), u′ = ∇φ and ρ′=p′/c∞2. In this case, M∞ = 0.5,

A = 0.004 m2/s and ω = 3.095 rad/s. The FW-H surface is a cube extending from −0.5m
to 0.5m in all three directions (see Fig. 2a), and is discretized by regular surface grids on the

six faces with 400 nodes on each face. The time history of p′ at a receiver located at �xr =
(10m, 0m, 10m) as computed using the FW–H analogy shown in Fig. 2b perfectly matches the

analytical solution. Slight, practically not visible, differences in the plotted values are due to the

numerical integration on the FW-H surface. The derivatives w.r.t. to the source coordinates are

also compared in Fig. 2c. The agreement between finite differences of the analytical solution

and the differentiation of the FW-H is very good. As expected, the derivative w.r.t. xs2 is zero.

3.2 Optimization Framework For the Rotating Frame

Adjoint–based optimization in unsteady flows may become very demanding in terms of time

and memory. This is the main reason why the use of adjoint methods is comparatively restricted

in aeroacoustic shape optimization. In this particular application, in order to reduce the cost

and since the intake geometry is axisymmetric, a CFD domain that corresponds to a single

blade passage of the fan is used, with appropriate periodicity conditions. The flow and adjoint

equations are solved in a rotating (with the rotational speed of the engine) frame, thus leading

to a steady-state solution for both the flow and adjoint problems. A continuous circumferential

distribution of receivers at given radius and axial position is used for the computation of the

objective function of eq. 6. The workflow of the aeroacoustic optimization is shown in Fig. 3.
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Figure 2: Results of monopole sound source in flow for a receiver located at (10m, 0m, 10m). (a)

Schematic illustration of the monopole source, the FW-H surface and the receiver. (b) Compari-

son of the time history of pressure fluctuation within a period. (c) Comparison of the derivatives

of the acoustic objective function w.r.t. to the three coordinates (xsi , i=1, 2, 3) of the monopole

computed by the differentiation of the FW-H and FDs applied to the closed–form expressions.

4 SHAPE OPTIMIZATION OF THE AERO–ENGINE INTAKE

The above–described aeroacoustic analysis and optimization framework is applied to opti-

mize an air–engine intake. The aeroacoustic objective function to be minimized, i.e. that of

eq. 6, includes only the tonal noise. The geometry of a single blade passage shown in Fig. 4a

has about 3.7M nodes arranged on 100 meridional planes. The far–field flow is still and the

pressure distribution on the fan–inlet is used as boundary condition. The pressure contours on

the nacelle and mid–plane of the engine intake are plotted in Fig. 4b.

An axisymmetric parameterization model is adopted for the intake. The generatrix is firstly

reconstructed using NURBS and this gave rise to 15 design parameters controlling the shape of

the nacelle lips and the throat area, leaving its outer shape and the part close to the fan intact.

NURBS control points (CPs) are allowed to vary in both the axial and radial direction. Since

the first and last points are fixed, the optimization has 2×13=26 design variables, Fig. 5.

The FW–H surface, illustrated in Fig. 6a, has 16000 nodes. To perform the integration of

eq. 3, the FW–H surface should rotate to cover the full circumference. However, as a cheaper
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Figure 3: Workflow of the aeroacoustic optimization. Primal and adjoint parts are colored in

blue and orange, respectively.

(a) (b)

Figure 4: (a) Entire and close–up views of the CFD domain and the surface grid on one of

periodic boundaries. The parameterized part of the nacelle is colored in red. (b) Isobar contours

on the nacelle, mid–plane and engine inlet.

Nacelle generatrix

Active CPs

(1)(2)(3)(4)(5)(6)(7)
(8)

(9)

(10)

(11)

(12)
(13)

Figure 5: Distribution of the control points for the parameterization of the nacelle generatrix

using NURBS. The first and last control points are fixed during the optimization.

alternative, the receivers (instead of the FW–H surface) are rotated and the acoustic pressure is

retrieved by superimposing pressure signals from each receiver. As both the grid and numerical

set–up may affect the acoustic results, the outcome of the FW–H analogy is verified in the

current case as well. To do so, the acoustic pressure computed based on the hybrid model is

76



M. Monfaredi, V. Asouti, X. Trompoukis, K. Tsiakas and K. Giannakoglou

compared with that of the unsteady CFD code at 3 receiver locations, shown in Fig. 6a. The

CFD results match reasonably well those obtained by the FW–H analogy, Fig. 6b, given that

part of the discrepancies may be due to the neglect of quadrupole terms, representing the noise

due to viscous effects and turbulence.
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Figure 6: (a) Location of the FW–H surface, in green, and 3 receivers within the CFD domain.

Streamlines are colored based on the pressure values. (b) Comparison of the pressure fluctua-

tions computed by CFD+FW–H with those obtained by pure CFD, at 3 different receivers.

The convergence history of the aeroacoustic objective function is presented in Fig. 7a. A

clear reduction in the objective value after 13 optimization cycles can be seen. This reduction

is also obvious in Fig. 7b that compares the amplitude of the sound pressure at a single receiver

in the baseline and the optimized geometries. Changes of the parameterized part of the nacelle

are illustrated in Fig. 8. As seen, the biggest geometrical change occurs at the nacelle lip

which is pushed forward, while minor changes occur elsewhere. Regarding the aerodynamic

performance, the optimized shape increases the total pressure loss by 0.6% compared to the

initial one. This could be expected as an acoustic objective was only considered.
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Figure 7: (a) Convergence of the aeroacoustic objective value, normalized by its first cycle

value. (b) Comparison of the time history of the pressure fluctuation within a period at one

receiver.
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(a) (b)

Figure 8: (a) Generatrix and (b) 3D view of the baseline and optimized geometry of the param-

eterized part of the nacelle.

5 CONCLUSIONS

This paper presented recent extensions of the analysis and adjoint–based optimization tool

of the in–house CFD solver PUMA in aeroacoustic shape optimization. A previous implemen-

tation of the permeable version of the FW–H analogy in the frequency domain, for 2D prob-

lems, is extended and verified in 3D, by comparing the results with the analytical solution of a

monopole source, including its differentiation. Based on this, a feasible 3D aeroacoustic noise

prediction and continuous adjoint–based shape optimization framework is developed for aero–

engine intake application which makes use of a steady flow and adjoint solution and builds the

unsteady field by rotating steady fields, overcoming the downsides of unsteady adjoint, namely

large memory requirement and long solution time.

The developed tool is used to optimize the shape of the nacelle lips and the throat area of

an aero–engine intake. The value of the aeroacoustic objective function is noticeably reduced

highlighting the functionality of the developed tool. Extensions to consider both aeroacoustic

and aerodynamic objectives in a multi-disciplinary framework are straightforward.
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1 INTRODUCTION

Shape optimization is a powerful tool for speeding up the design process that has been proven

to be useful in many disciplines. There is a vast number of different methods available in the

literature, CAD- or IGA-based methods [1, 2], node-based methods [3, 4, 5, 6, 7] and level-set

methods [8]. Vertex Morphing [9, 10, 11] is a parameterization method for node-based shape

optimization. In node-based shape parametrizations, the surface nodes of the computational

model are directly used as design parameters. No additional parametrization step is required to

set up the optimization problem, and a high number of design parameters leads to the richest

possible design space and provides the highest design potential. In practical applications, the

rich design space can often not be explored freely but is geometrically limited by design re-

quirements e.g. a packaging geometry. Such geometric constraints have to be considered in the

optimization problem to avoid finding infeasible designs.

In the context of node-based shape optimization, geometric constraints for symmetry (im-

plicit) and demolding (explicit) have been shown in [12]. Constraints for the thickness of solid

models have been developed by [13] for level-set optimization, using a single aggregated con-

straint for efficiency reasons. Similarly, thickness constraints to control the minimum member

size in node-based shape optimization have been realized by [14]. Nodal non-penetration con-

straints to satisfy packaging requirements have been introduced by [15] in shape optimization

with the Vertex Morphing parametrization. Aggregation of nodal non-penetration constraints

using a Kreisselmeier-Steinhausser function for FFD-based shape optimization was proposed

by [16]. Another approach of aggregating nodal non-penetration constraints using a second-

order continuous penalty function was proposed by [17] and evaluated for spline-based shape

parameterizations.

This paper is structured as follows: First, the Vertex Morphing parameterization is explained,

followed by the gradient-projection method, which is used as an optimization algorithm in this

work. Then, two geometric constraints, a packaging constraint and a minimum thickness con-

straint for node-based shape optimization are described and two constraint aggregation func-

tions are presented. Finally, the application of the geometric constraints in combination with

the aggregation functions is shown on two numerical examples with the Vertex Morphing pa-

rameterization, and their performance is evaluated in comparison with the node-wise application

of the constraints.

1.1 Vertex Morphing

The basic theory of shape optimization with the Vertex Morphing parametrization is briefly

introduced, the interested reader can refer to [10, 11] for more details.

Vertex Morphing introduces a design control field p that controls the shape z via convolution

with a filter function F .

z(ξi) =

∫ ξi+r

ξi−r

F (ξi, ξ, r)pdξ (1)

Where ξi is the surface coordinate of the unknown point and r is the radius of the filter

function. Accordingly, the shape update is controlled by the update of the control field in the

same way.

The shape of the filter function is not as decisive, often linear hat functions are used, the

radius has a major influence on the smoothness of the generated shape and shape update re-

spectively. The filter radius can be seen as an additional design parameter, which controls the
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desired shape modes of the optimal design.

In discrete form, Equation 1 becomes

z = Bp (2)

and the vector of discrete shape coordinates z is generated by multiplying the vector of

control node coordinates p with the morphing matrix (or filter matrix) B. B has a size of

m × n, with the m being the number of shape coordinates z and n the number of control

coordinates p. Usually, the same discretization is used for the shape and the design control

field, but this is not mandatory.

A shape optimization problem with the Vertex Morphing parameterization can therefore be

formulated as follows:

min
p

f(z(p))

s.t. gj(z(p)) ≤ 0, j = 1 . . . ng,

hk(z(p)) = 0, k = 1 . . . nh

where f(z(p) is the objective function, the control point coordinates of Vertex Morphing p
are the design variables, gj and hk are the inequality and equality constraints respectively. In

gradient-based shape optimization, also the update of the design variables, as well as the design

control gradient is of interest. It is straight forward to compute the discrete shape update Δz
from the design control update Δp by applying Equation 2:

Δz = BΔp (3)

The discrete design gradient of the objective ∇pf is determined from the discrete shape

gradient ∇zf following the chain rule of differentiation by a so-called backward-mapping op-

eration with the transpose of the morphing matrix

∇pf = BT∇zf (4)

The gradients of the constraints are mapped accordingly.

1.2 Optimization algorithm

In this work, constraints are considered using an adaption of Rosen‘s gradient projection

algorithm [18, 19] with the suggestions of Arora and Haug as described in [20]. The search

direction s is determined by projecting the objective gradient in the subspace tangent to the

active constraints.

s = ∇pf −
[
N

(
NTN

)−1
NT

]
∇pf (5)

where N is the matrix of the active constraint gradients with a size of n×k, with the number

of active constraints k and the number of design variables n.

For nonlinear constraints, this projection step can still lead to a violation because the curva-

ture of the constraint is not considered. To avoid a drift-off error throughout the optimization,

this violation has to be corrected. In this work, the correction is not made immediately, but in
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Figure 1: Nodal packaging constraint. Infeasible nodes are highlighted in blue.

the next optimization step, to avoid multiple evaluations of the constraint functions. It is de-

termined by the vector of the active constraint values ga and the matrix of constraint gradients

N :

c = −N
(
NTN

)−1
ga (6)

The update of the control parameters is finally computed by combining the search direction

and the correction.

Δp = αs+ c (7)

α is the step length factor and can be determined by a line-search. For practical applications

and in this work, we limit the shape update in each iteration by applying an upper limit for

‖αs‖∞ and ‖c‖∞ individually. [15] has successfully used the same projection algorithm with

a constant step length for imposing the nodal non-penetration constraints, however, without the

correction therm in Equation 6. [21, 22] have developed alternative optimization algorithms

that have proven to work well with the Vertex Morphing parametrization.

2 GEOMETRIC CONSTRAINTS

The path of the design nodes through the design space during the shape optimization with

Vertex Morphing is not known a priori. Therefore it is often not possible to describe the ge-

ometrical limitation of the design space by static variable bounds. Instead, constraints can be

added to the optimization problem. Two types of geometric constraints are presented in this

section.

2.1 Packaging constraint

A packaging constraint geometrically limits the design space by dividing it into a feasible

and infeasible domain. Figure 1 shows a shape optimization problem with the discrete design

surface described by the mesh nodes with coordinates zi and a discrete packaging geometry.

The surface normals of the packaging geometry point to the feasible domain. The boundary of

the infeasible domain can be represented using arbitrary geometries, which leads to maximal

flexibility in the setup of the optimization problem.

The design surface is not allowed to penetrate the packaging geometry, this can be formulated

by node-wise inequality constraints [15]. The value of the packaging constraint at node zi is
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Figure 2: Detection of local thickness with ray-surface intersection on discrete surfaces. The

sketch on the right shows the nodes that affect the local thickness vector at node ti

determined by the distance vector to the closest point cpi on the packaging geometry, and the

surface unit normal ncpi
of this closest point.

gi = (zi − cpi)
Tncpi

≤ 0 (8)

gi is positive if node zi penetrates the design boundary, zero if it lies on the boundary, and

negative if it is in the feasible domain.

In this work, detection of the closest point on the packaging boundary is done using a nearest-

neighbor search. For practical applications, this appears to be accurate enough if the discretiza-

tion of the packaging geometry is fine enough.

The gradient of the response function is computed under the assumption, that the closest

point will not change due to a movement of the point zi. In this case, the nodal gradient is the

normal of the closes point at the position i and 0 elsewhere.

∇zgi = [0 . . . ncpi
. . . 0]T (9)

2.2 Minimum thickness constraint

A limitation of the minimum thickness of the geometry is another geometric constraint that

is often required. Figure 2 shows a shape optimization problem with the discrete design surface

described by the mesh nodes zi and the definition of a nodal thickness value that is used in this

work. The nodal thickness is determined by following a ray in negative surface normal direction

−ni until an intersection ipi with the design surface is found. This operation has been realized

in a numerically efficient way with an octree-based ray-element intersection algorithm. With

this approach, only a surface discretization is required and no discretization of the solid is

needed.

The value of the thickness constraint at node zi is determined by the difference of the limit

value for the thickness tmin and the norm of the nodal thickness vector ti.

gi = tmin − ‖zi − ipi‖ = tmin − ‖ti‖ ≤ 0 (10)

The thickness response value is affected by several nodes as can be seen in Figure 2 on the

right side for the 2-dimensional case. The node zi, the direct neighbors (a, b) of zi, since they

affect the orientation of the surface normal, and the nodes of the element that is intersected by

the ray (c, d). The gradient of the thickness response function is computed under the assumption,

that the ray will not intersect another element than initially detected (cd). The same logic holds

for surfaces in 3 dimensions.
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[13] formulated thickness constraints for level-set optimization based on a medial axis de-

fined by a skeleton model. [14] has also formulated a minimum thickness constraint based on

an approximated medial axis and considered the medial axis to be fixed in the computation of

the gradients.

3 AGGREGATION OF NODAL GEOMETRIC CONSTRAINTS

The node-wise formulation of geometric constraints in the previous section can lead to a high

number of active constraints in the optimization problem that is in the order of the number of

design variables [13]. For shape optimization with Vertex Morphing, the constraint gradients are

consistently mapped to the control space (Equation 4). The contribution of the nodal constraints

to the matrix N has a sparse pattern, however, the bandwidth is determined by the filter radius

and can be large. For large models with a high number of design variables in combination

with a large filter radius, the solution of the equation system in equations 5, 6 can become

numerically challenging [15]. An alternative to considering each nodal constraint individually

is the aggregation of the individual nodal constraints into a single global constraint function.

This allows satisfying the nodal constraints in an average sense and numerically less expensive

way. [13, 16, 17] have previously applied aggregation formulations for geometric constraints

in shape optimization. Constraint aggregation is also commonly used for stress constraints in

structural optimization see e.g. [23]. In this work, two aggregation functions are evaluated

for nodal geometric constraints in node-based shape optimization with the Vertex Morphing

parameterization.

One possibility to aggregate the nodal constraints is to take the 2-norm of all nodal con-

straints that are infeasible, in other words, have a positive nodal constraint value g+i (Equa-

tion 8).

g2-norm =

√√√√ n∑
i=1

(
g+i

)2
(11)

Since only infeasible nodes contribute to the aggregated constraint function g2-norm, only

gradients of the active constraints contribute to the gradient of the aggregated function. It is

not possible to foresee if a node will soon violate the constraint. New nodes can suddenly

become infeasible, potentially leading to a zig-zagging behavior. This makes the correction

step (Equation 6) important.

As an alternative to the aggregation using a 2-norm, a Kreisselmeier-Steinhausser (KS) func-

tion [24] might be used. In contrast to the aggregation of only infeasible values with the 2-norm,

the Kreisselmeier-Steinhausser function takes all nodal values into account.

gKS =
1

ρ
ln

n∑
i=1

e(ρgi/β) (12)

The function gKS(gi) approximates the non-continuous max-function max(gi). The factor β
is used to bring the nodal constraint values gi to a common scale, independent of model units. In

this work, we use the maximum allowed shape update for β. The approximation becomes more

accurate with higher values of ρ, too high values can lead to numerical overflow, however. All

nodes, except the one with the highest constraint value, contribute very little to the aggregated

gradient, this can lead to a similar problem with nodes suddenly becoming infeasible as for

the 2-norm aggregation. Smaller values for ρ lead to a more conservative approximation of the
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maximum violation. This results in a smoother behavior of the constraint in the optimization

but eventually does not allow the optimization to converge close to the actual limit of the nodal

constraints. This effect will be demonstrated in the following numerical example.

4 NUMERICAL EXAMPLE

A simple 1D example is used to describe the basic effects of constraint aggregation for

geometric constraints in shape optimization with the Vertex Morphing parametrization. The de-

viation of an initially straight line to a hat-shaped target curve with a height of 1.0 is minimized,

while an obstacle has to be considered.

min
p

f(z(p)) =
n∑

i=1

(zi(p)− zhati )2

with the target function zhat:

zhat(ξ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 ξ ≤ −10
ξ
10

+ 1 −10 ≤ ξ ≤ 0
−ξ
10

+ 1 0 ≤ ξ ≤ 10

0 10 ≤ ξ

(13)

The line is discretized with a mesh size of 0.5 and n=81 nodes. A Vertex Morphing filter

radius r=5.0 is used. The obstacle geometry is discretized with the same mesh size and limits the

vertical extension of the design line. The shape optimization is executed for 100 iterations using

the gradient-projection algorithm (subsection 1.2) with an upper limit on the step length and

correction of 0.01. The optimization is executed with the aggregation functions and compared

with a reference solution using nodal constraints.

• 2-norm aggregation: g2-norm ≤ 0

• Kreisselmeier-Steinhausser: gKS(ρ = 10) ≤ 0

• Kreisselmeier-Steinhausser: gKS(ρ = 30) ≤ 0

• nodal constraints: gi ≤ 0 for i = 1 . . . n nodes

All four examples converge to almost exactly the same final shape - a smooth representation

of the target hat-function respecting the design boundary, as shown in Figure 3.

The objective convergence for all cases is very similar (Figure 4a). Looking at the maximum

nodal violation of the packaging constraint in Figure 4b reveals oscillations for the case with

2-norm aggregation. These oscillations are caused by nodes that jump between the feasible

and infeasible domain over the optimization iterations. This is to be expected for the 2-norm

aggregation since feasible nodes do not contribute at all to the aggregated response gradient.

The oscillations between steps 25 and 60 occur at the center of the line, where the bump in

the packaging geometry is hit first by the design geometry. Here, a maximum nodal violation

in the order of the maximum shape update occurs if the previous design was feasible. This

violation is corrected in the following iterations until the design becomes feasible again and

the process repeats. After iteration 60, the design also hits the other part of the packaging
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Figure 3: Final shape after 100 iterations using the different formulations for the packaging

constraint and close-up near the obstacle
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Figure 4: (a) Convergence graph of the objective function and (b) maximal nodal violation of

the bounding geometry in each iteration.
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geometry at a height of 0.3. From this point, the maximum nodal violation jumps between the

different geometric locations of the contact points with the packaging geometry. The aggregated

constraint stays active all the time, however, individual nodes still oscillate between feasible and

infeasible domains. The overall maximum violation does not vanish even after many iterations,

however, it remains bounded by the step size.

The case with Kreisselmeier-Steinhausser aggregation with ρ=30 shows no oscillations until

iteration 60, where the shape hits the packaging geometry at tree locations. From this point,

oscillations of the maximum nodal violation are observed, similar to the case with the 2-norm

aggregation. This can be explained by the fact, that high ρ values result in a good approxi-

mation of the maximum value. The gradient of the aggregated constraint is dominated by the

gradient of the node with the maximum violation, and even if all other nodes still contribute,

they are underrepresented, and the computed shape update might push them to the infeasible do-

main. The smaller value for ρ=10 in the Kreisselmeier-Steinhausser aggregation leads to a more

conservative approximation of the maximum violation. The contribution of the nodes to the ag-

gregated response value and gradient is more evenly distributed and relaxes the zig-zagging

behavior. This comes with a price, the approximation is too conservative and the design ge-

ometry is constrained with a distance to the packaging geometry. An optimal choice of ρ is

problem-dependent, since the number of design variables and therefore nodal constraints, and

the number of nodes that come close to the boundary affect the behavior.

The reference solution with the nodal constraints does not show any oscillatory behavior and

the packaging constraint is satisfied exactly.

In general, all four cases satisfy the geometric constraint, with small violations for the ag-

gregation with the 2-norm and the Kreisselmeier-Steinhausser function with ρ=30. Such small

violations of geometric constraints are often acceptable, especially if Vertex Morphing is used

to find new shapes in early design stages.

5 STRUCTURAL OPTIMIZATION EXAMPLE

As a second application example, we present a structural optimization of a solid hook model.

The hook has a height of 237 mm and is modeled with a linear elastic material with a Young’s

modulus E=206.9 GPa and a Poisson’s ratio ν=0.29. The mass of to hook should be minimized

while maintaining the initial compliance for two static load cases with a load at the center (LC1:

F=32 kN) and tip (LC2: F=16 kN) respectively. For both load cases, the hook is supported at

the top. In addition to the structural constraints, two geometric constraints from the previous

sections are applied. The design space is limited by a curved packaging geometry with 4505

nodes, and a minimum thickness constraint of tmin=15.0 mm. The load application area and

the supports are excluded from the shape optimization, this leads to a total number of 7117

surface nodes in the design area. A smooth transition is enforced between design and non-design

regions. The setup of the optimization problem with the initial shape and discretization of hook

and packaging geometry is shown in Figure 5. A filter radius of r=25.0 mm is used for the

Vertex Morphing parameterization, the maximum step length in search direction and correction

is limited to 1.0 mm. The shape optimization, including the adjoint sensitivity analysis of the

structural response functions and the pseudo-elastic mesh motion for the internal nodes, is done

with the ShapeOptimization-, StructuralMechanics-, and MeshMovingApplication of the open-

source software Kratos-Multiphysics [25]. The optimization is stopped after 100 iterations.

Three cases of the optimization problem are solved, comparing the different formulations for

the geometric constraints:
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Figure 5: Optimization setup of the hook with the load-cases, the design surface (blue), the

packaging geometry (yellow) and the simulation meshes.
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Figure 6: Improvement of mass objective and violation of the compliance constraints for the

three cases during the optimization process.

• 2-norm aggregation: g2-norm ≤ 0

• Kreisselmeier-Steinhausser: gKS(ρ = 18) ≤ 0

• nodal constraints: gi ≤ 0 for i = 1 . . . n nodes

The shape optimization converges to very similar shapes for all three cases, with a mass

reduction of ≈13%. The case with the Kreisselmeier-Steinhausser function leads to a bit less

improvement due to the conservative approximation of the maximum nodal violation for the

geometric constraints (Figure 6 left). Even though the aggregated geometric constraints cause

slight oscillations for the objective and the compliance constraints, the overall trend is compa-

rable to the case with node-wise constraints. The structural constraints are active during the

whole optimization, they are violated by less than 0.005% (Figure 6 right) for all three cases,

which is negligible.

Figure 7 shows the maximum nodal violation of the packaging constraint and the minimum

thickness constraint respectively for the three cases. The 2-norm aggregation again leads to a
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Figure 7: Maximum value of all nodal violations of packaging and thickness constraints for

the three cases during the optimization process. The violations remain much smaller then the

applied step size.

Figure 8: Final shape of the hook for the three cases, from left to right: 2-norm aggregation,

Kreisselmeier-Steinhausser aggregation, nodal constraints. The nodal violation of the packag-

ing constraint is colored, feasible nodes are colorless.
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Figure 9: Final shape of the hook optimization showing the nodal violation of the thickness

constraint. Feasible nodes are colorless. In the right figure, the initial (black) and geometrically

unconstrained final shape (red) are indicated.

zig-zagging behavior of the nodal violation and finally results in a maximum violation of ≈0.2

mm of both geometric constraints. Individual nodes that violate the constraint are pushed to

the feasible domain by the correction step after one iteration. Those nodes do not contribute to

the aggregated constraint gradient anymore and jump to the infeasible domain in the following

iteration. The maximum nodal value gi does not occur at the same node in each iteration. The

Kreisselmeier-Steinhausser formulation is able to satisfy the geometric constraint with slightly

smaller oscillations but is more conservative. The design surface is stopped within a distance of

≈0.2 mm to the packaging geometry and ≈0.1 mm to the minimum thickness constraint. This

leads to a slightly smaller objective improvement for this case. With another choice of ρ this

might be improved, however, i.e. ρ=25 already leads to much larger oscillations. The case with

the nodal formulation is again able to satisfy the packaging and also the minimum thickness

constraints exactly, as expected. The final shapes with the nodal violations of the packaging

constraint are shown in Figure 8. The nodal violations of the thickness constraint are shown in

Figure 9.

This example demonstrates that aggregation of geometric constraints can be applied also in

more complex shape optimization problems when other physical constraints have to be consid-

ered. The maximum number of simultaneously active constraints in this example is 173 for the

node-wise constraints and 4 for the aggregated formulations. Even though the aggregation of the

geometric constraints does amplify the known zig-zagging behavior of the gradient-projection

algorithm, the negative impact on the objective improvement and enforcement of the physical

constraints is negligible. It is highlighted that globally the same shapes are found in all three

cases.
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6 CONCLUSIONS

Constraint aggregation functions have been successfully applied to geometric constraints

in shape optimization problems with the Vertex Morphing parameterization and a gradient-

projection algorithm. The performance of the aggregation functions has been evaluated in an

academic 1D example and a 3D structural-mechanics example, comparing with the node-wise

application of the constraints. The latter example was also subject to additional structural con-

straints. The overall number of constraints can be drastically reduced, which is of interest,

especially for large models. With both investigated constraint aggregation functions, the same

shapes as are found as with the reference solution with nodal geometric constraints. Depend-

ing on the aggregation formulation, the final shape does either slightly violate the geometric

constraint, or is stopped within a small distance to the constraint limit in case of a conserva-

tive choice of the ρ value of the Kreisselmeier-Steinhausser formulation. Such small deviations

from the geometric constraints are often acceptable when searching new shapes, and constraint

aggregation can be an efficient alternative to the numerically challenging nodal application of

the constraints.
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J R Hughes, editors, Encyclopedia of Computational Mechanics Second Edition, pages 1–

42. John Wiley & Sons, Ltd, Chichester, UK, December 2017. ISBN 978-1-119-00379-3

978-1-119-17681-7. doi: 10.1002/9781119176817.ecm2109.

[12] Oliver Schmitt, Jan Friederich, Stefan Riehl, and Paul Steinmann. On the formulation

and implementation of geometric and manufacturing constraints in node–based shape op-

timization. Structural and Multidisciplinary Optimization, 53(4):881–892, April 2016.

ISSN 1615-1488. doi: 10.1007/s00158-015-1359-0.

[13] G. Allaire, F. Jouve, and G. Michailidis. Thickness control in structural optimization via a

level set method. Structural and Multidisciplinary Optimization, 53(6):1349–1382, June

2016. ISSN 1615-1488. doi: 10.1007/s00158-016-1453-y.

[14] Oliver Schmitt and Paul Steinmann. Control of minimum member size in parameter-

free structural shape optimization by a medial axis approximation. Computational Me-
chanics, 61(6):717–727, June 2018. ISSN 0178-7675, 1432-0924. doi: 10.1007/

s00466-017-1477-1.

[15] Reza Najian Asl, Shahrokh Shayegan, Armin Geiser, Majid Hojjat, and Kai-Uwe Blet-

zinger. A consistent formulation for imposing packaging constraints in shape opti-

mization using Vertex Morphing parametrization. Structural and Multidisciplinary Op-
timization, 56(6):1507–1519, December 2017. ISSN 1615-147X, 1615-1488. doi:

10.1007/s00158-017-1819-9.

[16] Benjamin J. Brelje, Joshua L. Anibal, Anil Yildirim, Charles A. Mader, and Joaquim R.

R. A. Martins. Flexible Formulation of Spatial Integration Constraints in Aerodynamic

Shape Optimization. AIAA Journal, 58(6):2571–2580, May 2020. ISSN 0001-1452. doi:

10.2514/1.J058366.

[17] Marios Damigos, E. Papoutsis-Kiachagias, and Kyriakos Giannakoglou. Adjoint Variable-

based Shape Optimization with Bounding Surface Constraints. International Journal for
Numerical Methods in Fluids, 93, July 2020. doi: 10.1002/fld.4900.

93



Armin Geiser, Ihar Antonau, and Kai-Uwe Bletzinger

[18] J. B. Rosen. The Gradient Projection Method for Nonlinear Programming. Part I. Linear

Constraints. Journal of the Society for Industrial and Applied Mathematics, 8(1):181–217,

March 1960. ISSN 0368-4245, 2168-3484. doi: 10.1137/0108011.

[19] J. B. Rosen. The Gradient Projection Method for Nonlinear Programming. Part II. Non-

linear Constraints. Journal of the Society for Industrial and Applied Mathematics, 9(4):

514–532, December 1961. ISSN 0368-4245. doi: 10.1137/0109044.
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Abstract 

The aim of the study is the formulation of a computational method for the identification of the 
first damage in planar frames. The damage is considered to be concentrated in some oppor-
tune sections of beams and columns and many assume different intensities. 
In order to identify the location and intensity of the damage when measured frequencies on 
the damaged frame are available, an original algorithm has been implemented assigning to 
each critical section an appropriate fitness function. This function indicates the difference be-
tween the measured frequencies of vibration and those obtained, by means of opportune nu-
merical models, assuming that the damage is located in the considered critical section. The 
exact location will then be individuated seeking the optimal fitness function. An iterative pro-
cedure which allows reducing the computational effort is also presented with reference to a 
case study. 

Keywords: Damage identification; Frames; Stiffness matrix; Frequencies of vibration. 
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1 INTRODUCTION 

As it can be observed from the scientific literature of recent decades, structural health mon-
itoring of existing structures has received great interest and has inspired many dedicated stud-
ies. Many studies are devoted to the evaluation of the static or dynamic response of damaged 
structures and highlight their modification with respect to undamaged configurations [1-9]. 
The presence of structural damage reduces the bearing capacity of structures and therefore, in 
order to prevent its progressive expansion, which inevitably leads to structural failure, must be 
detected in its early stage. Many damage identification techniques are reported in the literature 
and require the measurement of some data on the existing structure. Different data can be tak-
en into account for instance the variation of dynamic characteristics, such as natural frequen-
cies [10-17], mode shapes [18,19], or static quantities, such as displacements or strains 
induced by applied loads [20-22]. Many studies are based on the solution of an inverse prob-
lem that compares numerical response data, evaluated on a model of the structure, to the cor-
responding experimentally measured ones [23-25]. Recent computational procedures based on 
genetic algorithms [26-28], particle swarm optimization [29], fuzzy cognitive maps [30] have 
been presented. 

A crucial aspect concerns the model of damage and numerous attempts to quantify local 
defects are reported in the literature. All the models involve a reduction of the stiffness of the 
structural element by using one-dimensional continuum theories [31] or fracture mechanics 
methods [32,33].  

The damage can be either localized or diffused on a certain portion of the length of the 
structural element and its intensity can be related to the reduction of the reactive area of the 
cross section, for example due to the presence of a notch. Contributions on crack modelling 
approaches and their effects on the response of beams can be found in [34,35]. 

The aim of the present paper is to propose a computational method for monitoring the 
structural integrity of planar frames. It is assumed that appropriate sensors are permanently 
located on the frame detecting its vibration properties with a certain periodicity. In this case it 
will be possible to immediately detect the appearance of the first structural damage indicated 
by a difference between some measured data and those known for the undamaged frame. The 
widely used assumption of a hinge with a rotational spring is used to model the damage and 
this is assumed to be concentrated, located in opportune critical sections and may have differ-
ent intensities. 

With the aim of identifying the location of the first damage, the frequencies of vibration of 
undamaged and damaged frames are calculated. In particular the frequencies of vibration are 
evaluated for each damage configuration of the frame corresponding to a possible location of 
damage among the considered critical sections. These frequencies of vibration are then used 
to identify the location and the intensity of the damage by means of the solution of an oppor-
tune optimization problem. The application on a case study allows to show the reliability of 
the proposed identification algorithm. Furthermore, an automatic procedure is illustrated 
which, assigning to each critical section an opportune fitness with respect to the possibility 
that the damage is located there, allows to iteratively converge to the exact position reducing 
the required computational effort.   

2 FREQUENCIES OF VIBRATION IN UNDAMAGED AND DAMAGED FRAMES 

In the present study planar regular frames, with columns clamped at the ground level, are 
considered. Once the mechanical and geometrical characteristics of each structural member of 
the frame have been assigned, the stiffness and mass matrices of the undamaged frame respec-
tively denoted as Ku and Mu can be evaluated. In particular the mass matrix takes into account 
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of the distributed masses in beams and columns. Neglecting the axial deformability of the 
structural members, the degrees of freedom of the frame, and therefore the size of the stiffness 
and mass matrices, correspond to the horizontal displacements of each floor and the rotation 
of the unconstrained nodes. The natural frequencies of vibration u of the undamaged frame 
can be evaluated solving the classic equation: 

( )2det 0u u
uω− =K M  (1) 

When the first damage occurs in a structural member the total stiffness decreases and con-
sequently also the frequencies of vibration assume lower values with respect to the undam-
aged configuration. 

In this study reference is made to a single damage which can be located in one of the criti-
cal sections of the frame corresponding to the base or top of each column at each floor or to 
the ends of each beam. With reference to the two corners at the top of the frame, the critical 
section will be located in correspondence to the structural member (beam or column) having 
the lower elastic moment. 

In accordance with what is frequently adopted in the scientific community, the loss of re-
sistance induced by the presence of the damage is modelled by means of a hinge with a rota-
tional spring whose stiffness kϕ  is related to the intensity of the damage. 

In order to evaluate the natural frequencies of the frame having a damage located in one of 
the previously described critical sections, new stiffness and mass matrices must be assembled. 
For each location of the damage, stiffness and mass matrices, respectively denoted as Kd and 
Md

 , are evaluated. The correspondent frequencies of vibration for each location of the dam-
age are evaluated solving the equation: 

( )2det 0d d
dω− =K M (2) 

The stiffness of the rotational spring modelling the damage will be assumed equal to ni dis-
crete values which decrease with the intensity of the damage itself. 
In particular, the stiffness of the rotational spring is expressed as: 

1, ... ,d
i i i

d

EI
k i n

Lϕ α= = (3) 

where αi is an integer number and Id and Ld are respectively the moment of inertia and the
length of the structural element where the damage is located (beam or column).  

3 DAMAGE IDENTIFICATION PROCEDURE 

In this section the damage parameters, i.e. location and intensity, are evaluated by means of 
an optimization strategy based on the use of a certain number of vibration properties meas-
ured on the considered frame. For each possible damage location among the critical sections a 
fitness value is assigned for each damage intensity as follows: 

,
, max

ˆ
1, ... ,

nf
i i kj

k j i
i iu

F F j n
ω ω

ω
−

= − = (4) 

where: 

Fmax is an arbitrary constant, chosen great enough to have always Fk > 0 
nf is the number of considered natural frequencies 

97



Annalisa Greco, Ilaria Fiore and Alessandro Pluchino 

ni is the number of considered damage intensities 
ˆ

iω  is the measured i-th frequency of vibration 

,i kjω  is the calculated i-th frequency of vibration with intensity damage j located in critical

section k 

iuω  is the i-th frequency of vibration for the undamaged frame

For each critical section the maximum fitness among those associated to different intensity 
values is then selected: 

( ),max 1, ... ,k k j iF F j n= = (5) 

Of course, among all the fitness functions associated to possible damage locations, only the 
one related to the exact position will reach its maximum value. 

Once the position of the damage is identified, it is possible to evaluate its intensity compar-
ing all the sets of frequencies related to variable intensity to the measured values.  

The first step of the proposed algorithm concerns with the localization of the damaged sec-
tion and represents the main goal of the proposed approach. Undoubtably from a health moni-
toring point of view the most crucial aspect is to identify the presence and the location of the 
damage. Once the damage is detected it is important to repair as soon as possible the involved 
structural zones in order to prevent subsequent worsening, independently on the damage in-
tensity. 

In principle all the natural frequencies of all the possible configurations of damaged frames 
can be calculated and the correct location of the damage can be identified minimizing the fit-
ness function. Anyway, it will be shown that it is sufficient to take into account only some 
natural frequencies in order to identify the correct damage location. In the applicative section 
the number of considered frequencies of vibration has been set equal to 4. For large frames 
with high number of critical sections in order to reduce the number of calculated fitness val-
ues, an original iterative procedure described in the following can be applied.  

It is worth pointing out that the proposed procedure applies both for damage identification 
in symmetric and unsymmetric frames. Anyway, in case of symmetric frames it is not possi-
ble to discern between symmetric damage positions. However, in order to carry out mainte-
nance and restoration interventions, this circumstance does not appear to be a major limitation 
as it allows to drastically reduce the sections to be considered to two only. Anyway, if one 
needs to univocally identify the damaged section in a symmetric frame, some information on 
mode shapes could be added in the objective function. 

4 CASE STUDY AND NUMERICAL APPLICATIONS 

The five storeys frame assumed as case study for the proposed damage identification pro-
cedure is shown in Figure 1. In the same figure the length and the profiles of the structural 
members are also reported. In Table 1 moments of inertia and the ratio between yield mo-
ments of the cross sections and the yield stress are reported together with the values of the dis-
tributed masses. The value of Young modulus for the steel under consideration is assumed to 

be: 
2

210000000
kN

E
m

=
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Figure 1 - Frame with five floors and four columns 

Profile Ix [m4] My /σy[m3] m [kN*s2/m2] 
HE320A 22930 10-8 1479 10-6 97.6 10-3 
HE280A 13670 10-8 1013 10-6 76.4 10-3 
HE240A 7763 10-8 675.1 10-6 60.3 10-3 
HE200A 3692 10-8 388.6 10-6 42.3 10-3 

Table 1 - Characteristics of the structural elements 

For this frame the numbers of degrees of freedom in the undamaged configuration is equal 
to 30 and therefore 30 frequencies of vibration can be calculated solving the related dynamic 
eigenvalue problem once the matrices Ku and Mu are evaluated. 

The total number of critical sections for the considered frame is 88 but since it is symmet-
ric, 49 critical sections must be taken into account. For each possible location of the damage, 
and for each value of its intensity, 31 frequencies of vibration can be calculated. Considering, 
eight levels of intensity of the damage, 392 sets of 31 frequencies of vibration have been 
evaluated. With the aim of solving the inverse problem which concerns the identification of 
damage parameters, some examples of location and intensity of the damage will be developed, 
and the related natural frequencies will be used as pseudo-experimental data in the identifica-
tion procedure. 

4.1 The Identification Algorithm 

The identification algorithm has been realized within the software environment NetLogo 
[36], where the five storey frame can be reproduced in a virtual metric space, as shown in 
panel (a) of Figure 2. The critical sections Sk (k = 1,…,88), represented by yellow squares, are 
labeled with an increasing ID number. Among them, let us call ST the target (damaged) sec-
tion.  
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Figure 2 – (a) Frame with five floors and five columns, where each critical section is labeled with an increas-
ing integer ID number. (b) The same frame at the end of a single run of the identification procedure, with the 
jumper that has reached one of the two symmetric target sections, after a path along a subset of the explored sec-
tions (colored in red). The exploration circle is visible around the jumper. See text for more details. 

The searching procedure can be easily implemented by creating a “jumper”, able to move 
from one section to another, starting at t = 0 from a given (randomly selected or fixed by the 
user) section Si on the frame, for which the fitness Fi is calculated. Jumper is represented by a 
concentric green circle. Then, the algorithm goes on according to the following subsequent 
steps: 

1. At the next iteration step t > 0, the jumper explores the frame by calculating the fitness
values associated to all the neighboring sections included within an “exploration circle”
of a given radius R (expressed using spatial units arbitrarily chosen as equal to the dis-
tance between two floors). Sections for which the fitness has been calculated are col-
ored in red.

2. Then, two options are available for the jumper:

• if some of these neighboring sections have a fitness Fk > Fi, the jumper moves on
the section with the maximum fitness among them;

• if all the neighboring sections have a fitness Fk < Fi, with a certain probability
pm < 1 (called “moving probability”, which introduces in the system a sort of
noise useful to avoid local maxima) the jumper is forced to move on one of those
sections, chosen at random, otherwise the procedure is stopped.

3. If the procedure has not been stopped at step 2, the algorithm came back to step 1 and
prosecutes until it is stopped. Notice that a given section can be visited more than one
time during the entire procedure but, of course, its fitness is calculated only the first
time the section has been included in the exploration circle.

4. If the section reached by the jumper when it stops coincides with the target section ST, 

or with its symmetric section (both these sections are represented as black circles), we
say that the run has been successful.
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In panel (b) of Figure 2 the situation at the end of a generic successful run is reported, with 
the jumper over the target. An example of exploration circle, centered on the jumper, is also 
shown for allowing the user to visualize it. The percentage E% of explored (red) sections over 
the total is visibly around 50% and this tell us that the algorithm was not only effective (since 
the jumper reached the target) but also efficient, since we were able to identify the damaged 
section without needing to calculate the fitness for all the sections. 

Of course, in order to have more reliable information about the effectiveness and the effi-
ciency of the proposed algorithm for the identification of a given (fixed) target section, one 
needs to repeat N times (with N >> 1) the entire procedure starting, for each run, from a dif-
ferent random section. At the end of the N repetitions, the percentage P% of successful runs 
and the average percentage E% of explored sections will represent the quantities that we have 
to take into account for evaluating the performance of the algorithm.  

4.2 Results for the five storeys frame 

In this paragraph we discuss the numerical results obtained by applying our algorithm to 
the considered five storeys frame. The damage can be located in each of the 49 critical sec-
tions and eight damage intensities, represented by the rotational stiffness given by equation (3) 
with [ ]1000 800 700 500 300 100 50 25α = , have been taken into account.

Considering different arbitrary sets of location and intensity of the damage and assuming 
the correspondent first four frequencies of vibration as pseudo-experimental data, the fitness 
function (4) has been previously evaluated for each of the 49 critical sections observing that it 
always reached a zero value in correspondence of the exact damage configuration. 

Successively in order to implement the searching procedure described in the previous sec-
tion (and therefore to avoid the calculation of the fitness for all the sections), the two percent-
ages P% (of successful runs) and E% (of explored sections) have been evaluated assuming 
different damage locations and intensities. 

In order to evaluate an appropriate value of the radius of the exploration able to provide re-
liable results still maintaining a significant reduction in the number of nodes in which the fit-
ness function has to be calculated, a preliminary analysis has been developed. Figure 3 shows 
the results obtained assuming for example the damage located in sections 1 and 15 (involving 
respectively one column and one beam) with intensity 300α =  and evaluating the two per-
centages P% and E% for increasing values of R. As it can be observed, increasing the value of 
the radius, higher values of both P% and E% are reached. A fair compromise between the need 
of reaching high values of P% without increasing too much E% can be obtained assuming 
R=2,2, so this value will be chosen for the simulations. Figure 4 shows the effect of the forc-
ing moving probability pm in the identification of the damage located again in sections 1 and 
15 with intensity 300α = .  While for the damage located on the beam the two percentages P%

and E% show to be almost independent on pm, for the damaged column a sensible increase 
with the forcing moving probability can be observed. In order to choose a unique value, in the 
following pm has been set equal to 0,9. 

With the aim of investigating on the effects of a damage located at the base of a column or 
on a beam at each floor, the sections 1, 3, 5, 7, 9 (base columns) and 15, 16, 17, 18, 19 (right 
end of beams of the first span) have been taken into account. Several sets of N = 1000 runs 
have been performed and the results in terms of P% and E% have been reported in Figure 5.  

101



Annalisa Greco, Ilaria Fiore and Alessandro Pluchino 

Figure 3 – P% and E% for damage located at the base of a column (1) and on a beam (15) of the first floor 
with stiffness intensity parameter =300 for different values of the radius parameter 

Figure 4 – P% and E% for damage located at the base of a column (1) and on a beam (15) of the first floor 
with stiffness intensity parameter =300 for different values of the forcing moving probability 

As it can be observed from Figure 5 the damage identification procedure gives excellent 
results when the damage is located on one of the considered beams. In these cases, in fact, 
independently on the considered section (and therefore on the floor) the percentage of suc-
cessful runs turns out to be always 100% while the percentage of explored sections is about 
80%. On the other hand, the identification of damages located at the base of the external col-
umns provide values of P% around 85% with E% always smaller than 60% 

Therefore, we can conclude that, for the considered five storeys frame, the proposed identi-
fication procedure provided satisfactory results, thus confirming its good performance and 
reliability. 

5 CONCLUSIONS  

• A computational method for monitoring the structural integrity of planar frames is pre-
sented.

• The first damage is identified by means of the frequencies of vibration of each damaged
configuration of the frame corresponding to a possible location of damage among the
considered critical sections.

• The solution of the damage identification problem is achieved by means of an optimiza-
tion algorithm which assigns to each possible damage location, among the critical sec-
tions, a fitness value and then seeks the maximum one.
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Figure 5 – P% and E% for assigned damage location and variable intensity  
Left side: damage located at the base of an external column at each floor starting from the base  

Right side: damage located at the right end of each beam in the first bay starting from the bottom 
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• An automatic procedure has been implemented within the software environment
NetLogo and it has been shown how it is possible to iteratively converge to the exact
damage position reducing the number of calculations.

• The application to a case study allows to show the reliability of the proposed identifica-
tion algorithm.
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SOFT COMPUTING FRAMEWORK FOR THE UNCERTAINTY-
BASED OPTIMIZATION OF THE LENGTH AND HEIGHT OF OGEE-

CRESTED SPILLWAY

Jafar Jafari-Asl , Mohamed El Amine Ben Seghier ,
Sima Ohadi and Vagelis Plevris

Abstract

Dams are one of the most important and biggest critical infrastructures of any country. The 
failure of a dam can be a major catastrophic event, causing irreparable environmental, human 
and financial losses. The low overflow capacity of the spillway is considered a major failure 
mode for dams. Generally, the design of spillways is carried out based on deterministic ap-
proaches. However, there are many uncertainty factors in the design parameters, which have 
a crucial influence on the spillway performance. In this study, a new framework is presented 
for the accurate design of the spillways considering the surrounding uncertainty factors of the 
effective parameters on spillway failure causes. Therefore, the length and height of an ogee-
crested spillway is considered as the design variables to be optimized. For this purpose, a meta-
heuristic algorithm based on machine learning techniques is used. This latter consists of the 
grey wolf optimizer (GWO), while the combination of GWO and the Monte Carlo simulation 
(MCS) with the Kriging meta-model are utilized as a new framework for the optimum design of 
spillway under uncertainties. The proposed framework is investigated on the spillway redesign 
of a real case study in Iran. 
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1 INTRODUCTION

2 PROBLEM FORMULATION
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3.3 Monte Carlo Simulation (MCS)
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4 APPLICATION AND RESULTS

4.1 Case study
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4.2 Results and discussion
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5 CONCLUSIONS
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DESIGN OF REINFORCED CONCRETE ISOLATED FOOTINGS 
UNDER AXIAL LOADING WITH ARTIFICIAL NEURAL NETWORKS

German Solorzano and Vagelis Plevris

Abstract

In engineering practice, the design of structural elements is a repetitive task that has proven to 
be difficult to fully automate. This is mainly because of the complex relations of the design 
variables and the multiple strength and other requirements that must be fulfilled based on code 
provisions to ensure safety and endurance, usually under extreme loading conditions or harsh 
environments. An optimal design can be defined as a set of values for the design variables that
correspond to the optimal performance of the structural element in terms of a given criterion,
usually related to the minimization of cost, while also satisfying all constraints related to 
strength, serviceability, functionality and safety. Such a design problem can be formally written 
as a function that maps a structural element, under given loading conditions, into a unique 
optimal design. In recent years, Artificial Neural Networks (ANN) have been adopted as a pow-
erful strategy to solve complicated regression and classification problems where the underlying 
mapping function is generally unknown and difficult to formulate analytically. The ANN learns 
patterns contained in large databases through an automated process called training and uses 
that information to make highly accurate predictions. In the present study, a methodology that 
uses ANNs for the optimal design of structural elements is developed and applied to the design 
of reinforced concrete (RC) isolated footings under axial loading. First, a Genetic Algorithm 
is employed for the generation of the training dataset for the ANN, which includes RC footing 
designs that are optimized in terms of the material cost. Then, the ANN is trained and finally 
asked to produce new optimal designs for new sets of input parameters. Parametric tests are 
performed to determine the required size of the dataset and the most suitable network architec-
ture. The results show that the accuracy of the prediction is very good, especially when larger 
datasets are used. It is shown that training an ANN to design structural elements is a viable 
option that gives acceptable solutions quickly, requiring extremely low computational cost. 
Furthermore, it is highlighted that good results can be obtained using a simple ANN architec-
ture and a relatively small training dataset.
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2 METHODOLOGY
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2.1 Problem definition
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2.3 Neural Network Architecture
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2.4 Training Procedure
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3 RESULTS AND DISCUSSION

3.1 Parameters Summary

3.2 Training loss

3.3 ANN performance comparison
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4 CONCLUSIONS

4.1 Future work
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PREDICTION MODELS FOR LOAD CARRYING CAPACITY OF RC 
WALL THROUGH NEURAL NETWORK

Shaheera Sharib , Naveed Ahmad , Vagelis Plevris and Afaq Ahmad

Abstract

This study is focused on the development of prediction models for the determination of the load
carrying capacity of reinforced concrete walls using Artificial Neural Networks (ANNs). A da-
tabase of 95 samples is used for the RC Wall, based on available experimental studies, includ-
ing various critical parameters, such as the length of web portion of the wall L , thickness of
wall boundary member b , effective depth of wall (d), height of wall H , shear span ratio
a /d , vertical steel ratio ρv , horizontal steel ratio ρh , yield strength of vertical and horizon-

tal steel f , compressive strength of concrete f , and the ultimate load carrying capacity
V Depending on the combination of the input parameters, 4 different ANN models are

trained by using a customized code in Matlab. Several error metrics have been used for the 
evaluation of the performance of the various ANN morels. The comparative study exhibited that 
the predictions of the ANN model are closer to the experimental values as compared to their 
counterpart physical models, i.e., the compressive force path (CFP) and the current design
codes, ACI and Eurocode 2.
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3 MODELLING OF ARTIFICIAL NEURAL NETWORKS (ANN)
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Abstract

This paper describes the design of a propeller-based electric-propulsion system for hover 
condition. The design procedure harnesses modeFRONTIER optimization framework with 
various single- and multi-objective hybrid optimization schemes. Several analyses were inte-
grated to the design framework and propeller geometry optimizations were conducted.
The multi-objective problem consisted of trade-off between the contradicting goals of perfor-
mance (required electric power at hover) and acoustics (tonal overall sound-pressure-level). 
Using various hybrid optimization schemes, the Pareto tradeoff fronts were found for 2, 3, 
and 4 bladed propellers. These propellers are compared to an off-the-shelf propeller blade 
(Mejzlik 18x6) which is used as a reference. This reference propeller proves to be good de-
sign, compared to the optimized results. Still, from the optimized Pareto results, 4 propeller 
configurations were chosen to be fabricated and tested. These configurations are optimized 
by their acoustic or performance trade-off. These optimized propellers represent a good com-
promise, which is better than the reference propeller.

Keywords: Propeller, Performance, Acoustic, Electric, UAM, Optimization, MDO
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1 INTRODUCTION
Urban Air Mobility (UAM) development has been expanding since the publication of 

UBER-Elevate white paper published in 2016.[1] Since then, numerous manufacturers have 
been developing various UAM configurations. For example Refs. [2] and [3] show two possi-
ble configurations for such vehicles; most of which are multi-propeller based. This makes the 
propellers a critical item in these vehicles, especially at hover conditions. At hover the propul-
sion system performance is at its highest required power,[4] thus propeller required-power at 
hover impacts the overall vehicle performance. In addition, the acoustic signature at hover is 
the highest and together with new regulations [5] the importance of optimized hovering propel-
lers increases dramatically.

In this paper the design procedure for hover propellers is depicted. The design procedure 
which includes both analyses, validation, and optimization will be reviewed. From this design 
process, several propellers were chosen to be fabricated. 

Although UAM requires high thrust, an equivalent small propeller is specified, thus the en-
tire design, fabrication and testing procedures are simpler and more rapid. Still, all results are 
highly related to all hovering configuration, with the appropriate scaling.

This makes the discussed design procedure very useful for future, large scale hovering-
propeller design, especially confronting the complex performance/acoustic tradeoff.

2 DESIGN SPECIFICATION
As a reference propeller, the Mejzlik 18×6 is used. Figure 1 shows the Mejzlik 18×6 pro-

peller and Figure 2 depicts its geometric properties as function of radial coordinate, r, i.e. 
pitch, β, chord-to-radius ratio, c/R, and thickness-ratio, t/c, distribution. A design criterialimits 
the propeller radius to R ≤ 0.23 m, which is the radius of the reference Mejzlik 18×6 propeller.

The propeller in the current effort is specified according to its produced thrust. At design 
conditions, the Mejzlik 18×6 gives thrust of T = 2.8 kgf which is established as the required 
thrust for hover (static operation) for all presented designs. The propulsion system is based on 
Sobek 20-38 Spider brushless DC motor, with Kontrol-X 55LV electronic speed controller, 
ESC. The acoustic signature is optimized for an observer which is located at azimuth angle,
θ=100º, relative to the propeller axis, as depicted in Figure 3. This angle fits the azimuth 
which generally exhibits the highest sound-pressure-level signature for operated propellers.[6]

The above specifications allow the design of propeller with various goals. The most im-
portant is the required battery power, electric power, Pe. Different from other design efforts
which refer to the shaft power, here the battery power is the most important, thus the electric 
propulsion system is to be considered through the design iterations.[7] The second parameter 
to minimized is the acoustic signature as heard by the observer. This will be considered as the 
overall sound pressure level, OASPL, at the position of the observer. In the current effort, on-
ly the tonal component will be used as design goal. The tradeoff between these two goals is to 
be found using optimization.
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Figure 1: Mejzlik 18×6 Propeller, front and top views

Figure 2: Mejzlik 18×6 Propeller, front and side views

Figure 3: Design conditions of observer-propeller attitude
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Propeller
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3 PROPELLER’S ANALYSES
To allow proper optimization, the required analyses should be both accurate and efficient, 

i.e. using low computer resources. In this case, three analyses are used: propeller performance, 
electric system, and propeller acoustic analysis.

3.1 Propeller Performance Analysis
The propeller performance model is based on blade-element model (BEM) which was ex-

tensively validated in the past.[8] Although, most past validation cases were of axial flight re-
gime, in the current case hover condition is treated which was also validated.[7]

BEM analysis uses a 2-D aerodynamic database based on the geometry of the propeller 
cross sectional airfoils. Accuracy of the 2-D aerodynamic database is an important part of 
BEM level-of-confidence. Thus, substantiation of the current database was conducted using 
EZair RANS (Reynolds Average Navier-Stokes) software.[9] In addition, some installation 
losses, due to the propeller and test rig interaction, were implemented on the BEM analysis.

3.2 Electric System Analysis
In the current effort a simple motor model is used to find the required electric power. The 

model is based on four parameters: speed constant, Kv, armature resistance, Ra, no-load cur-
rent, I0, and controller efficiency, ηc.[10] The model is based on the following assumptions:

a. Power factor is equal to unit. This assumption is applicable to small brushless Perma-
nent Magnet (PM) motors.

b. Magnetic losses (eddy/Foucault Current and magnetic hysteresis) can be neglected.

3.3 Acoustic Analysis
The current acoustic model predicts only the tonal noise of the propeller. The model is 

based upon Farassat’s formulation[11] as used in former design cases[12]. The model went 
through extensive validation for various cases of propeller on various flight regimes.[13],[14]

4 OPTIMIZATION
Design technique is similar to former cases accomplished with the same tools. These tools 

include using the validated analysis tools (BEM, electric model, and acoustic model) together 
with Esteco’s modeFRONTIER framework.[13],[7]

Figure 4 presents a screen capture of modeFRONTIER framework. This design environ-
ment enables the integration of different simulation models into a single synergetic design 
tool. In addition, it allows the use of various optimization procedures, thus a multi-
disciplinary design optimization, MDO, tool is obtained. In the current case, first the propeller 
performance is calculated and then the propeller acoustic is estimated. The use of mode-
FRONTIER enables an easy usage of any of the input or output parameters, either as design 
variables or to include it in the goal function and constraints.

In addition, a geometric pre-analysis and performance post-analysis, are implemented us-
ing Excel spread sheet. The geometry pre-analysis is used to parametrize the design variables 
which are the pitch, β, thickness-ratio, t/c, and chord-to-radius ratio, c/R, distribution along 
the blade. The current effort uses a Bezier spline to achieve smooth distribution of the geome-
try, hence 6 design parameters are used for each distribution. Thus, the design problem con-
tains total of 18 design variables. All airfoils are based on the Mejzlik 18×6 cross sections,
and the propeller radius is fixed to R=0.23 m.
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To ensure the structural properties of the optimized designs, two geometric constraints are 
satisfied. First the blade thickness distribution should not be lower than the original Mejzlik 
18×6. Thin blade might be “soft” or exposed to high stresses, which might cause unacceptable 
aeroelastic behavior, and high deflections. In addition, the root chord should not be larger than 
the Mejzlik 18×6’s root chord. This might cause a very thick hub which increases the propel-
ler weight.

To overcome these issues, the design procedure incorporated two geometric constraints 
over the thickness distribution and root chord. The first constraint limits the thickness distri-
bution and the second the rood chord. The thickness distribution, t (not t/c) has to be higher or 
equal to the Mejzlik 18×6 up to r/R=0.90, with a tolerance of 0.1 mm. The blade tip (0.9< r/R 
<1) was freed from this constraint – the impact over the design was high and it seems the im-
portance of this constraint, at the very tip of the blade, is less important. The root chord is lim-
ited to c/R < 0.15. Note that the Mejzlik 18×6’s c/R = 0.14 at the root (Figure 2), thus small 
increase of the root chord is allowed.

The performance post-analysis excel module is used to find the propeller-motor matching 
speed. Using the performance calculation, for given propeller geometry, several rotational 
speeds are calculated. To find the correct rotational speed, which the propeller produces the 
required thrust, T =2.8 kgf, a linear interpolation is used. Then, using the electric model the 
electric power, Pe, is found.

Figure 4: modeFRONTIER design framework screen capture
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Separate optimizations procedures were conducted for 2,3, and 4 bladed propellers. The 
aim is to find, for different number-of-blades, the tradeoff between the electric power and the 
overall sound-pressure-level, OASPL, as defined in the problem specification of section 2.

For each specific number-of-blades, the first stage is to find the Utopia Point in the design-
goal space. For a multi-objective problem containing two different cost-functions, this is ac-
complished by two separate single-objective optimizations; the first using the electric power 
as an objective and the second using the OASPL as the design goal objective. To demonstrate 
the procedure, the 2-bladed case is considered in what follows.

The single-objective optimizations are conducted using hybrid-optimization scheme based 
on the available methods in modeFRONTIER. This hybrid scheme can be easily transfer to 
any other available optimization framework. 

First, pilOPT scheme is used. This is highly autonomous method which uses multi-strategy 
self-adapting algorithm. No design-of-experiment, DOE, is required, nor any other a-priori
definition. pilOPT harnesses both surrogate-based (response surface) methods and implicit-
optimization methods, thus combines both local and global search techniques.

Using pilOPT, some candidates for further optimization are chosen. These are used as ini-
tial guess for constrained gradient-based optimization. In the current effort, sequential quad-
ratic programming, SQP, is used. Each initial guess is optimized into better design; thus a
population of optimized solutions are gathered. These are finally used as the initial population 
for genetic algorithm, GA, scheme, which hopefully finds the global-optimal solution.

Figure 5 shows the results for the two single-objective procedures, conducted for the 2-
bladed case. The left column is the minimum electric power, Pe, while the left column is the 
minim overall sound-pressure-level OASPL. The upper charts show the progress of the cost-
function as function of the iteration, Lower charts includes the same results in cost-function 
space.

Each analysis lasts about 5 sec. on a desktop computer using 8 parallel threads of calcula-
tion. The entire optimization scheme last about 5÷10 hours, mostly over-night. Some differ-
ences between the two cases are visible, mostly for the ratio between the SQP and GA 
analysis. While the min. Pe case uses much more iteration of SQP, the min. OASPL uses more 
iterations of GA scheme. 

In addition, for the min Pe, the SQP procedure went into a local minimum. Then, the GA
scheme “escaped” from this minimum into better region, supposedly global minimum. This is 
very common for gradient based methods such as SQP to converged to a local minimum. GA 
is less accurate with its minimum location, but it is capable of hopping to various minimum 
regions, i.e. global search capabilities. In comparison to the minimum Pe, the minimum
OASPL case exhibits the ability of SQP to locate an optimum which later was improved by 
the GA scheme. This Hybrid usage of various different scheme, harnesses each scheme’s
strength to a synergetic optimization procedure.

Note that the designer should carefully monitor the optimization and decide when to move 
from one method to the other, and which DOE to re-use when transferring from pilOPT to 
SQP and then from SQP to GA.

Gathering both results of the two single-goal optimization is presented in Figure 6. On this 
figure also the reference Mejzlik 18x6 propeller is presented as a green circle. The cloud of 
results can be used to substantiate DOE which is then used to optimize the Pareto frontier. 
This is done using a multi-goal scheme, in the current case mainly by MOGA and NSGA 
schemes. The final Pareto frontier after optimization is presented as a black curve in Figure 6.
Note that the cloud of results from the two single-objective optimizations, draw the final Pare-
to with relatively good accuracy. Thus, the Utopia-point estimation, actually plays an im-
portant role for the multi-objective scheme.

148



O. Gur, J. Silver, R. Dítě, and R. Sundhar

Figure 5: 2-blades Utopia Point, single-objective optimization results
Left: minimum electric power, Pe, Right: minimum overall sound-pressure-level OASPL

Figure 6: 2-blades single-objective results compared to the reference Mejzlik 18x6 and final Pareto frontier

Min. Pe

Min. Pe

Min. OASPL

Min. OASPL
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The multi-goal optimization was conducted 3 times for 2, 3, and 4 blades configurations. 
Each uses the same procedure mentioned above. Pareto frontiers which resulted from the op-
timization are presented in fig. 7. Propellers based on the Mejzlik 18×6 blades are also 
marked by red circles. The design influence of number-of-blades is prominent – increased 
number-of-blades causes both OASPL decrease and Pe increase – a tradeoff which the de-
signer should consider carefully.

From these Pareto frontiers, 4 propeller configurations were chosen – these are marked 
with arrows in fig. 7 and include:

a. 2 blades, minimum Pe (2B min Pe)
b. 2 blades, minimum SPL (2B min SPL)
c. 3 blades, minimum Pe (3B min Pe)
d. 4 blades, minimum Pe (4B min Pe)
These selections are based on motivation for improving the already adequate Mejzlik 18x6, 

on different aspects. The minimum Pe is being chosen as improved Pe without penalizing the 
OASPL. Similarly, min. OASPL is chosen with no penalty over Pe.

The propeller characteristics are depicted in table 1, and their blade geometric parameters 
in fig.8. The clear difference is the rotational speed. This appears both as the mechanism of 
reducing the OASPL for the 2 blades propeller and for achieving the proper thrust for the 3 
and 4 bladed propeller. To reduce the rotational speed, thus achieving min SPL for the 2 blad-
ed propeller, the pitch was increased and the chord slightly increased as well.

For the 3 and 4 blades, the rotational speed had to decrease to achieve the required thrust,
T=2.8 kgf. The chord cannot decrease due to the geometric constraint, thus the chord re-
mained similar and thickness remains above the Mejzlik 18×6 blade. To maintain high 
enough rotational speed, the pitch decreases for the 3 and 4 bladed propellers, thus the electric 
efficiency, ηe, and figure-of-merit, FM, remain relatively high. 

While the 3-bladed propeller exhibits high FM and low ηe, the 4-bladed exhibits low FM 
and high ηe. Generally, all tradeoff in such complex design case, is beyond simple intuition 
and it is a result of handling with all constraints while striving to minimize all design goals. 
This proves the advantage of such MDO (multidisciplinary design optimization) framework, 
which takes contradicting requirements and find the best compromise.
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2B min Pe

2B min SPL

3B min Pe

4B min Pe

Figure 7: Pareto frontiers for the optimized results
Red circles mark the results for propeller based on Mejzlik 18×6 blades

2-Blades 
Mejzlik 18×6

2-Blades
min.Pe

2-Blades
min.SPL

3-Blades
min.Pe

4-Blades
min.Pe

Electric Power, Pe, W 445 425 445 455 495
Shaft Power, Pshaft, W 340 335 345 350 375
Engine Speed, Ω, rpm 5,100 5,200 4,600 4,700 4,500
Figure-of-merit, FM 0.68 0.69 0.67 0.66 0.62
Electric efficiency, ηe 0.77 0.79 0.77 0.67 0.76
Tonal OASPL, dB 66.1 66.1 64.7 56.9 48.3

Table 1: Optimized propeller characteristics
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Figure 8: Optimized blade geometries
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5 CONCLUSIONS
In this paper a comprehensive and methodic design process for hover-propeller is de-

scribed. The design process has to have a detailed specification which is based, in the current 
case, on an existing propulsion system with of-the-shelf propeller. In the basis of the design 
process are 3 analytic models: blade-element model for the propeller performance estimation, 
electric model for the propulsion system characteristics, and acoustic model which analyzes
the propeller tonal sound-pressure-level. Each of these models was previously validated ver-
sus various results in the literature. 

These analyses were incorporated in a design framework based on modeFRONTIER soft-
ware and a multidisciplinary-design-optimization environment was substantiated. This envi-
ronment includes, beside the analyses, various definitions of design variables, constraints, and 
design goals. Hence a multi-objective optimization problem is defined.

The design framework was run 3 times for designing 2, 3, and 4 bladed propellers. First, a
Utopia-point was found using a single-goal optimization process, which resulted with mature 
design-of-experiment for the final multi-goal scheme. The optimization harnesses various 
schemes such as multi-strategy, gradient-based, and evolutionary. 

The optimization scheme was resulted with a Pareto frontier which exhibits the tradeoff 
between the propulsion-system performance and its acoustic signature. From these tradeoffs, 
optimized propeller configurations were chosen. These are to be fabricated and tested. The 
test results for both performance and acoustics is to be compared with the design trends, thus 
the design process is to be validated.

In the current effort 4 propeller were resulted. Two of them are 2 bladed, minimal electric 
power and minimal acoustic signature. In addition, 3 bladed and 4 bladed propellers for min-
imum electric power were chosen. The four propellers exhibited some improvements over the 
reference of-the-shelf propeller. These improvements can be chosen by the designer according 
to the resulted Pareto frontiers. This demonstrates the use of Pareto tradeoff results as a quan-
titative, important decision support tool, during design process.
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Abstract 

Many complex engineering structures, e.g. components of helicopters, wind turbines, aircraft 
wings and propellers, are beamlike and non-prismatic. Structures of this kind may be tapered, 
pre-twisted, and even curved in their unstressed state, and undergo large displacements and 
3D cross-sectional warping. Their mechanical modeling can be addressed via non-prismatic 
beam elements providing the appropriate compromise between computational efficiency and 
accuracy. Over the years many models have been proposed for beamlike structures, but gen-
eral non-prismatic cases still require investigation. Formulas valid for prismatic beams, for 
example, generally provide incorrect results in non-prismatic cases, as the variation in the 
dimensions and orientation of the transverse cross-sections produce non-trivial stress distri-
butions absent in prismatic beams. A model suitable for the aforementioned non-prismatic 
elements should properly describe their shape, explicitly consider the effects of their geomet-
ric design features on their stress and strain fields, account for large displacements, and pro-
vide the known results of prismatic cases. We propose a physical-mathematical model that 
accounts for all such requirements. The non-prismatic beam is seen as a collection of plane 
figures (the transverse cross-sections) attached at a 3D curve (the beam’s centre-line). The 
centre-line’s points may undergo large displacements. The transverse cross-sections are fully 
deformable and may undergo warpings in and out of plane. Assuming small warping and 
strain fields, a variational approach provides the field equations. The model obtained enables 
evaluating even analytically the effects of geometric parameters (such as taper) on the stress 
and strain fields. Numerical examples and comparisons with the results of nonlinear 3D-FEM 
analyses confirm the effectiveness of the proposed modeling approach. 

Keywords: Non-prismatic beams, tapered cross-sections, large displacements. 
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1 INTRODUCTION 
Ongoing efforts to predict the mechanical behavior of non-prismatic beamlike structures, 

by using increasingly accurate and computationally efficient models, are aimed at optimizing 
their performance and cost. At the same time, tackling complex engineering problems contin-
uously leads to develop theories to meet ever more stringent requirements on the predictive 
models. For example, several theories have been developed over the years for helicopter 
blades with pre-twist, a geometric feature which induces several couplings in their mechanical 
response: for pre-twisted beams bending is always three-dimensional, and tension may be 
significantly coupled to torsion [1-6]. Wind turbine blades are another interesting example of 
pre-twisted structures. Moreover, they are also characterized by important spanwise variations 
in the dimensions of their transverse cross-sections, that is, they are also tapered [7-8]. Their 
shape alone makes predicting their mechanical behavior a very challenging task. Not to speak 
of the large displacements they may undergo, which further complicate the study and deriva-
tion of analytical closed-form formulas for engineering design purposes.  

Generally speaking, structural analyses show that the models and formulas commonly used 
for prismatic beams provide incorrect results in non-prismatic cases, as the variations in the 
dimensions and orientation of the transverse cross-sections produce non-trivial stress distribu-
tions absent in prismatic beams [9-10]. To date several models have been proposed for beam-
like bodies, ranging from linear theories [11-13] to geometrically exact and asymptotic 
approaches [14-20]. However, investigations are still required to develop rigorous yet applica-
tion-oriented models for three-dimensional non-prismatic beams, which explicitly account for 
important geometric features (such as taper), account for large displacements, directly furnish 
the 3D stress and strain fields, and provide known results in prismatic cases. 

This paper presents a physical-mathematical model that meets all such requirements for 
non-prismatic beams having fully deformable cross-sections and undergoing large displace-
ments and small strains. The general model is introduced in section 2. Analytical results for 
bi-tapered and pre-twisted beams are presented in section 3. Numerical examples and compar-
isons with the results of nonlinear 3D-FEM analyses are finally shown in section 4.

2 MECHANICAL MODEL 
In this section we introduce the main ingredients of our model, further details of which can 

be found in [21]. Then, we present tapered beams for which we can provide analytical formu-
las for evaluating their stress and strain fields (section 3) and, subsequently, provide compari-
sons with the results of nonlinear 3D-FEM simulations (section 4).

2.1 Geometry and strain measures 
The beam is seen as a collection of plane figures (transverse cross-sections) attached at a 

3D curve (beam’s centre-line). The cross-sections are fully deformable and may undergo dis-
placements in and out of plane (all called warping displacements). The displacement of each 
cross-sectional point from the reference to the current state consists of a rigid part (similarly 
to the beam theories with rigid cross-sections) onto which the aforementioned warping motion 
is superposed. Figure 1 shows a schematic of the beam’s reference and current states.

Two local triads of orthogonal unit vectors are introduced in Figure 1. The first, bi, in the 
reference state, with b1 tangent to the centre-line, depends on the reference arc-length s, i.e. 
bi=bi(s). The second, ai, is an image of bi in the current state and depends on the arc-length s 
and time t, i.e. ai=ai(s,t). A third triad, ci, pertains to a fixed Cartesian reference frame. 
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Figure 1: Schematic of current and reference states – centre-lines, cross-sections, local triads 

Two mapping functions, RA and RB, identify the positions of the beam’s points in their cur-
rent and reference states, respectively. The reference mapping function is

0 1 1( ) ( ) ( ) ( )B i B iR z R z x z b z (1) 

where R0B provides the position of the reference center-line relative to triad ci, xα identify the 
position of the cross-section’s points relative to such center-line, and zi are three mathematical 
variables, independent of time, with z1=s, and zα belonging to a bi-dimensional domain used 
to map the position, xα, of the cross-section’s points. Specifically, the spanwise variation of 
the shape of the transverse cross-sections is modeled via the map 

i ij jx z (2) 

where for the considered bi-tapered, pre-twisted beams Λ11=1, Λ22=Λ2(z1), Λ33=Λ3(z1), and 
the others Λij are zero. Throughout this paper, Greek indices range from 2 to 3, Latin indices 
take values from 1 to 3, and repeated indices are summed over their range.  

The current mapping function is defined, similarly to the reference one, as follows 

0 1 1 1( , ) ( , ) ( ) ( , ) ( , ) ( , )A i A i k i kR z t R z t x z a z t w z t a z t (3) 

where R0A denotes the position of the center-line’s points in the current state, while wk are the 
components of the warping displacement with respect to triad ak.

We now introduce vector and tensor fields useful to describe the motion of our beam, start-
ing with the vector field k, associated to the change in the beam’s curvature between the cur-
rent and reference states, given by 

T
A Bk T k k (4) 

where the proper orthogonal tensor field i iT a b describes the relative orientation between 
triads ai and bi, being the usual tensor (or dyadic) product, while the vector fields kA and 
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kB are such that i A ia k a and i B ib k b , ˄ being the usual cross-product and apex-prime 
denoting the derivative with respect to s (further details are in [21]).

Along with k, we introduce another vector field, γ, which is related to the difference be-
tween the center-line tangent vectors of the current and reference states, as follows 

0 0
T

A BT R R (5) 

Note that γ and k, which vanish for rigid motions and are invariant under superposed rigid 
motion [20], are referred to here as 1D strain measures. The Green-Lagrange strain tensor E is 
instead referred to here as 3D strain measure and is written in a form based on the assumption 
of small strain and warping fields considered in this work. In particular, we assume that the 
characteristic dimension of the transverse cross-sections, h, is much smaller than the reference 
length, L, of the centre-line (i.e. the beam is slender); the beam’s curvatures are much smaller 
than 1/h; the warping fields, wk, are considered small in the sense that their maximum order of 
magnitude is hε (ε<<1 being a non-dimensional parameter), while the order of their derivative 
with respect to z1 is at most εh/L. In general, all components of the strain measures are con-
sidered small in the sense their order of magnitude is at most ε. For the considered beam, the 
strain tensor E is written (as in [9]) in the form 

2

T TT H H TE I
2

T H HTT H H (6) 

where H is the gradient of transformation between the reference and current states 

A

B

RH
R

(7) 

2.2 Stress measures and balance equations 
The stress fields in our beam are determined supposing it to be elastic. For small strains the 

second Piola-Kirchhoff stress tensor S is linearly related to the strain tensor E, as follows 

S EE (8) 

where is the classical elasticity tensor [22], which characterizes the beam’s material behav-
ior (e.g. isotropic or not). For completeness’ sake, we also introduce the first Piola-Kirchhoff 
stress tensor P and Cauchy stress tensor C, which for our beam are P=TS and C=TSTT (as in
[9]). By using the stress tensor P, cross-sectional stress resultants are defined in terms of two 
vector fields, F (force) and M (moment), as follows 

1

1

i i

i i

F P a

M x P a a
(9) 

where Σ is the cross-sectional domain and ij i jP P a b .
We now exploit the principle of expended power to derive balance equations for our beam-

like body, which is three-dimensional and hyper-elastic [22]. To this end, its interactions with 
the external environment are quantified, for each velocity field attainable by the body, via the 
following functional, Πe, called the external power 

e V V
p v b v (10) 
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In (10), b are body loads per unit body’s reference volume V, p are surface tractions per unit 
area of the reference boundary ∂V, and v is the referential description of the time rate of the 
current position of the body’s points, given by 

0v v x a ww (11) 

where w• is the time rate of the warping displacement. Interactions among different parts of 
the body are instead quantified via the functional Πi, called the internal power 

i V

d
dt

(12) 

where Φ (body’s energy density) is half the scalar product of tensors S and E, i.e. 2Φ=S∙E.
According to the principle of expended power, for any velocity field attainable by the body, 

its interactions with the external environment and among its parts are such that at any value of 
the evolution parameter t the total power vanishes (i.e. Πe=Πi). The exploitation of such prin-
ciple is a usual technique in continuum mechanics to obtain balance equations in terms of the 
problem’s unknowns (see, e.g., [20-22]). In our case, it enables writing balance equations for 
the stress resultants, F and M, in the form 

0 0A

F + f = 0
M R F m

(13) 

where f and m are the resultants of the body and contact actions per unit length of reference 
centre-line. The same principle also enables writing balance equations to determine the warp-
ing fields wk. In particular, in the case the body loads and surface tractions on the beam’s lat-
eral surface are neglected in calculating the warping fields, or vanish, it is possible to reduce 
the determination of the warping fields to those that verify the variational condition 

0
V

(14) 

where δ denotes the variation of the energy function with respect to the warping fields. Note 
that warping fields satisfying condition (14) can be obtained numerically or, in particular cas-
es, analytically, as solutions of the corresponding Euler-Lagrange equations [23]. 

So far we have introduced the main ingredients of our modeling approach. Specifically, we 
have sketched the body’s shape, which is three-dimensional and beamlike, and have defined 
the strain measures, stress measures, and balance equations we use to describe its mechanical 
behavior. By using such ingredients, the resolution of the three-dimensional nonlinear elas-
ticity problem is now reduced to the solution of two main problems: the first governs the 
cross-sectional warping motion and it’s strong formulation can be given in terms of partial 
differential equations (PDEs) defined over a reference bi-dimensional domain (as is discussed 
in the next section). The second problem governs the centre-line motion and can be expressed 
in terms of a set of non-linear ordinary differential equations (ODEs) defined over a reference 
line (as in [9], for instance). It is worth noting that this approach reduces the computational 
effort and produces accurate results compared to nonlinear 3D-FEM approaches (as is shown
also in the following). Moreover, the results obtained with our model enable evaluating even 
analytically the effects of important geometric features, such as the cross-sectional taper, on 
the stress and strain fields in all points of the considered beamlike bodies. The analytical re-
sults obtained in this work are presented in the next section 3 and, subsequently, are compared 
to the results of nonlinear 3D-FEM approaches (section 4).
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3 ANALITYCAL RESULTS 
In order to determine the stress and strain fields in our beam we need to exploit the varia-

tional condition (14). In particular, considering the corresponding Euler-Lagrange equations, 
in which we keep the terms up to the order εh/L, we can obtain a set of partial differential 
equations (PDEs) with Neumann-type boundary conditions the solution of which enables de-
termining the components of tensor E. In doing this, hereafter we choose the current local tri-
ads to be tangent to the center-line and focus on the case of bi-tapered beams the material 
properties of which are described in terms of just two material constants (i.e., Young’s modu-
lus Y, and Poisson’s ratio υ). The effects of other geometric features (e.g. centre-line curva-
ture), as well as those related to the material non-homogeneity and anisotropy, will be 
addressed in subsequent works. 

Proceeding as in [21], the components E11, E21, and E31 of E, related to the out-of-plane de-
formation of the transverse cross-sections, can be written in the form 

11 2 3 3 2 1 1,1 1 3 1,2 2 1,3

1
21 1,2 1 3 2 2 3 3 2 1 2 2 2 1 3

1
31 1,3 1 2 3 2 3 3 2 1 3 3 3 1 2

( )

2 2(1 )( )( )

2 2(1 )( )( )

B

B

B

E k x k x e k x e x e

E e k x e k x k x x k x

E e k x e k x k x x k x

(15) 

where ij i jE E b b , subscript-comma denotes the derivative with respect to xi, and the sca-
lar fields e1, e2, e3 are solutions of the following PDEs problems 

1,22 1,33

1,2 1 3 2 1,3 1 2 3

2,2 3,3 2 2 3 3

3,2 2,3 2 2 3 3 1

2 2 3 3

0

( ) ( ) 0

0

e e in

e k x n e k x n on

e e d x d x in
e e g x g x g in
e n e n on

(16) 

In (16), Σ and ∂Σ are the cross-sectional domain and its boundary, nα are the components of 
the outward unit normal vectors on ∂Σ, and coefficients dα and gk are given by

1 1
2 3 3 3 2 2 3

1 1
3 2 2 2 3 3 2

1 1 1
1

2 2 2 2 2 1 3
1

3 3 3 3 3 1 2

2(1 ) 2(1 ) 2

2(1 ) 2(1 ) 2

2 (2 2 )
2 2(1 ) 2 (3 2 )

2 2(1 ) 2 (3 2 )

B

B

B

d k k

d k k

g k
g k k k k

g k k k k

(17) 

It is worth noting that the PDEs equations (16) formally resemble those for flexure and tor-
sion of a Saint-Venant’s cylinder. Unfortunately, PDEs problems of this kind can be solved in 
closed-form only for a few cases, but this is not surprising (this happens even in the linear 
theory of prismatic beams [11-13]). However, they can always be solved with the aid of nu-
merical methods for all other cases as well. Regarding our PDEs problem (16)-(17), we more-
over note that its solution can generally be expressed as linear combinations of the 1D strain 
measures, γ1 and ki, and their s-derivative, and explicitly depends on the beam’s reference 
shape through the shape of the cross-sectional domain Σ and some application-oriented func-
tions, e.g. the taper coefficients Λα and pre-twist coefficient kB1.
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The results discussed right now are particularly interesting because the nature of our PDEs 
problem allows considering even separately the effects of the different 1D strain measures and 
geometric parameters (Λα and kB1) in the determination of the scalar fields e1, e2, e3, which are 
necessary for calculating the strain fields (15), stress fields (8), and stress resultants (9).

Note that the approach used can also provide expressions for the strain fields E22, E33, E23,
related to the cross-sectional in-plane deformation, plus the relevant PDEs problem. However, 
we do not provide details about this in the present paper, but focus on the scalar fields e1, e2,
and e3, and discuss some cases in which they can be obtained in closed-form. 

3.1 Tapered beam with circular solid cross-sections 
As anticipated in the foregoing, the PDEs problem (16)-(17) admits closed-form analytical 

solutions in some cases. This holds, for instance, for circularly cross-sectioned tapered beams
with taper coefficients Λ2=Λ3=Λ and pre-twist kB1=0. In such case, in fact, equations (16)-(17) 
are satisfied by e1=0 and the expressions of e2 and e3 that follow 

1 2 2
2 1 3 2 2 2 3 2 3 2

1 2 2
3 1 2 2 3 3 2 3 2 3

2(1 ) ( )

2(1 ) ( )

e p k p k x R k x x k

e q k q k R x k x x k
(18) 

where R is the radius of the transverse cross-section (which depends on s, as it is scaled from 
the root to the tip of the beam according to the taper function Λ), and 

2 2 2
1 3 2

2 2 3

2 2 2
1 2 3

2 3 2

2 (1 2 ) (3 2 )( )

(1 2 )

2 (1 2 ) (3 2 )( )

(1 2 )

p x x R

p x x

q x x R

q x x

(19) 

Given e1, e2, e3, we can also write closed-form expressions for the strain fields E11, E21, E31
by combining (18)-(19) with (15). In particular, such strain fields can be expressed in terms of 
linear combinations of the 1D strain measures and their s-derivatives, as follows 

11 2 3 3 2 1

21 1 3 1 3 2 2 3 3 4 1

31 1 2 1 2 2 3 3 2 4 1

2

2

E k x k x

E k x p k p k p k p
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where the additional coefficients, p3, p4, q3, and q4, of the linear combinations are given by 
1 2

3

1
4 2

1 2
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4 3
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p R

p x

q R

q x

(21) 

Note that such solution (18)-(21), which is valid for the circularly cross-sectioned tapered 
beams considered here, undergoing large displacements and small strains, reduces exactly to 
that of the Saint-Venant’s linear theory if Λʹ vanishes (prismatic case) and both the beam’s 
displacements and strains are small. In such case, in fact, functions p3, p4, q3, q4 vanish, while 
functions p1, p2, q1, q2, which are proportional to kʹ2 and kʹ3 (i.e. the derivatives of the bending 
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curvatures), turn out to be proportional to the cross-sectional shear forces in the beam’s refer-
ence state, as in the works of Timoshenko [12] and Sokolnikoff [13]. 

It is worth noting that similar but generally more complex expressions for E11, E21, E31 can 
be obtained for other non-prismatic beams as well (see, e.g., [6,21]). However, we do not dis-
cuss here all cases in which we can obtain closed-form solutions to problem (16)-(17), but we 
present another interesting example (in section 3.2) and then proceed to compare the results of 
our model with those of nonlinear 3D-FEM simulations to verify its effectiveness in terms of 
computational efficiency and accuracy (section 4). 

Before doing this, we remark that regardless of the approach used (i.e. numerical or analyt-
ical) to solve our problem (16)-(17), the solution can always be expressed in terms of linear 
combinations of terms proportional to the 1D strain measures and their s-derivative, similarly 
to (18)-(20). The difference between the solution reported in this section and that of a generic 
bi-tapered, pre-twisted beam is represented by the expressions of the coefficients of the linear 
combinations (e.g. p1-p4), which are the functions of xα to be found. Such functions, however, 
have to be computed only once for a given cross-sectional shape. This fact, of course, con-
tributes reducing the computational effort required to solve the nonlinear elasticity problem 
that governs the behavior of our three-dimensional beams, as is shown in section 4 via numer-
ical examples and comparisons with the results of nonlinear 3D-FEM analyses.

3.2 Tapered beam with circular hollow cross-sections 
Let us now consider a tapered beam similar to that of the previous section, but having hol-

low cross-sections. Specifically, here we are considering thin-walled cross-sections, charac-
terized by small thickness-to-radius ratio, t/R. For example, we can refer to the case in Figure 
2, but without prescription on the shape of the taper function Λ (which does not need to be a
linear function for the derivation of the following formulas).

Figure 2: Tapered beam with circular hollow cross-sections (right) and its taper coefficient (left) 

Regarding functions e1, e2, e3 for the present beam, a vanishing e1 still satisfies the PDEs 
problem (16)-(17), but the expressions of e2, e3 obtained for the circular solid cross-sections in
section 3.1 do not satisfy all PDEs and boundary conditions (16)-(17) of the present case. For 
their determination, apart from using a numerical method, we can exploit, here, a simplified 
analytical approach (common for thin-walled beams) based on the assumption that the strain 
and stress fields may not vary too much through the cross-sectional thickness. 

162



G. Migliaccio 

By using such approach, we proceed to derive formulas for the strain fields (15) valid for 
the present beam subject to flexure and express such formulas as functions of the bending 
curvatures and their s-derivatives. To this end, it is convenient to consider the components E11,
Eθ1, Er1 of E (in place of E11, E21, E31), r and θ being the independent variables along the radial 
and tangential directions in the cross-section (see, e.g., Figure 2). Moreover, we also introduce 
the mean value Eθ, through the cross-sectional thickness t, of the tangential shear strain Eθ1,
which is given by the following line-integral through the thickness 

21 31
1 sin cos

tickness

E E E
t

(22) 

By exploiting (22), (15)-(16), and standard integration techniques based on Green’s formu-
las, we can write Eθ in the following form 

1 2 1 2
3 3 2 2(1 )( 3 ) sin (1 )( 3 ) cosE k k R k k R  (23) 

The mean value Er of the radial shear strain Er1 is instead obtained by exploiting the condi-
tion of zero traction on the beam’s lateral surface, which yields

2 1
2 3(1 )( sin cos )rE k k R (24) 

Now, the approximation relies on considering the local strain fields almost coincident with 
their mean value over the cross-sectional thickness, i.e. Eθ1≃Eθ and Er1≃Er. Such assumption 
is expected to provide good results in terms of predictions of the cross-sectional strain and 
stress fields in thin-walled tapered beams, the cross-sectional thickness of which is small with 
respect to the cross-sectional diameter or radius (e.g. t/R≃0.1). 

The following examples provide comparisons with the results of nonlinear 3D-FEM simu-
lations to verify the effectiveness of the modeling approach and formulas discussed so far. 

4 APPLICATION EXAMPLES 
In this section we shows the results obtainable by our model, which we have implemented 

in a numerical code written in Matlab language, referred to here as 3D-BLM. The results from 
3D-BLM in terms of displacement, strain and stress fields are compared to those of nonlinear 
3D-FEM analyses performed with Ansys, based on a fine mesh of solid tetrahedral elements 
with ten nodes and quadratic displacement behavior [24]. 

Two test cases are reported here. The first addresses a tapered beam with circular solid 
cross-sections, which may undergo large displacements while fixed at one end (the root) and 
loaded at the other (the tip) by a transverse force of progressively increasing magnitude. For 
such case we can exploit the analytical results presented in section 3.1. The second test case is
similar to the first, but the transverse cross-sections are hollow. For such case we exploit the 
formulas presented in section 3.2. 

4.1 Test case 1 (solid cross-sections) 
The tapered beam considered here has a straight, 100m long centre-line; its transverse 

cross-sections are circular, with a radius R=2m at the root, which is linearly scaled toward the 
tip up to 30% of the root value. The material properties are given in terms of Young’s modu-
lus, 70GPa, and Poisson’s ratio, 0.25. The beam is fixed at the root and loaded at the tip by a 
flapwise dead force, F, ranging from 100kN to 15000kN (as in Figure 3). The simulation re-
sults are summarized in the following. 
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Figure 3 provides an overview of the beam’s un-deformed state (F=0), its deformed states 
obtained from 3D-BML for F=5000kN and F=10000kN (left), and the deformed state given 
by nonlinear 3D-FEM for F=5000kN (right). Figures 4 and 5, instead, provide comparisons 
between 3D-BLM and 3D-FEM in terms of centre-line’s displacements and simulation times 
for increasing F. As we can see, the simulation time with 3D-BLM is much smaller than that
required by nonlinear 3D-FEM, while the accuracy of results is always almost the same. 

Figure 3: Beam’s deflected shapes with 3D-BLM for increasing F (left) and 3D-FEM for F=5000kN (right) 

Figure 4: Comparing 3D-BLM and 3D-FEM in terms of centre-line’s displacements along X (left) and Z (right) 

Figure 5: Comparing 3D-BLM and 3D-FEM in terms of tip-displacements (left) and simulation times (right) 
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Apart from this, our model can also provide other useful information about the mechanical 
behavior of our beam, e.g. the rotation of its local triads, its curvature change and strain fields,
as well as the corresponding stress fields and stress resultants.

Figure 6, for example, reports the rotation θY of the local triads about Y, along with the 
curvature change about Y (kY), for increasing F. It is worth noting that the spanwise variation 
of the bending curvature kY is quite different from a linear function. However, this is expected 
for tapered beams (in spite of what would happen in a prismatic case under the same loading 
condition). This depends, in fact, on the spanwise variation of the cross-sectional bending 
stiffness which, in the present case, increases from the beam’s tip to the root according to the 
increasing cross-sectional diameter. 

Figure 6: Local triads rotation θY (left) and bending curvature kY (right) with 3D-BLM for increasing F 

As anticipated in the foregoing, 3D-BLM can also directly furnish the stress fields in all 
points of the beam. Hereafter we compare the results obtained in terms of Cauchy stress fields
from 3D-BLM with those given by nonlinear 3D-FEM simulations. 

Specifically, Figures 7 and 8 show the stress fields CXX and CZX obtained for F=100kN at 
three reference cross-sections (30%, 50%, 70% span). For completeness’ sake, we also report 
the results obtained for a much larger value of F (see Figures 9 and 10, F=10000kN). Similar 
results have moreover been obtained at other cross-sections and for other values of F.

Taking a look at the results obtained, we have observed that the normal stresses follow a
Navier-like distribution in each cross-section (i.e. they are almost linear in x3), while the shear 
stress distributions are quite different from those predictable by the linear theory of prismatic 
beams. In fact, the transverse shear stresses at the cross-section’s boundary do not generally 
vanish in non-prismatic beams, while they are always zero in the prismatic case. Also, they 
can change from cross-section to cross-section in non-prismatic elements, while their distribu-
tion and magnitude do not change spanwise in the prismatic case. 

Figure 7: Stress field CXX at different cross-sections (30%, 50%, 70% span) for F=100kN 
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Figure 8: Stress field CZX at different cross-sections (30%, 50%, 70% span) for F=100kN 

Figure 9: Stress field CXX at different cross-sections (30%, 50%, 70% span) for F=10000kN 

Figure 10: Stress field CZX at different cross-sections (30%, 50%, 70% span) for F=10000kN 

The results obtained so far confirm the effectiveness of the modeling approach introduced 
in the foregoing and the accuracy of the closed-form solution of section 3.1. 

4.2 Test case 2 (hollow cross-sections) 
The second test case considered here addresses a straight beam with 100m long centre-line 

and circularly shaped hollow cross-sections, which are tapered from the root to the tip of the 
beam. The radius of the hollow root section is R=2m, while its thickness is t=0.2m. Such di-
mensions are linearly reduced toward the beam’s tip as shown in Figure 2. The material prop-
erties are summarized by reference values of Young’s modulus, 70GPa, and Poisson’s ratio, 
0.25. The beam is fixed at the root and loaded at the tip by a flapwise dead force, F, ranging 
from 100kN to 10000kN (as in Figure 11). 
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Figure 11: Beam’s deflected shapes with 3D-BLM for increasing F (left) and 3D-FEM for F=5000kN (right) 

Also in this case we can obtain the same sort of results shown in section 4.1. For example, 
Figure 11 reports the beam’s deformed shapes obtained from 3D-BLM for different values of 
F, as well as the deformed shape given by 3D-FEM for F=5000kN. Figure 12 provides com-
parisons between 3D-BLM and 3D-FEM in terms of tip-displacements and simulation times, 
which confirm the levels of computational efficiency and accuracy noticed in the previous test 
case (section 4.1). Figure 13 shows the displacements of the centre-line’s points along X and 
Z given by 3D-BLM (blue lines) and 3D-FEM (red marks) for increasing F. Finally, Figures 
14 to 16 report the comparisons (between 3D-BLM and 3D-FEM) in terms of Cauchy stress 
fields. In particular, Figure 15 shows the normal stress CXX obtained for F=5000kN at three 
cross-sections (30%, 50%, 70% span), while the corresponding shear stresses along the tan-
gential and radial directions, CθX and CRX, are in Figures 16 and 17. 

Regarding the stress fields, it is worth noting that also in this test case the normal stresses 
follow a Navier-like distribution in the transverse cross-sections, while the shear stress distri-
butions are quite different from those observable in prismatic beams with circular hollow
cross-sections. For example, the tangential shear stress distributions are observed to change 
spanwise (i.e. from the root section to the tip section), while they would be the same at every 
cross-section in the prismatic case. In addition, in the present case we also have radial shear 
stresses, which, instead, are absent in the prismatic case. 

Figure 12: Comparing 3D-BLM and 3D-FEM in terms of tip-displacements (left) and simulation times (right) 
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Figure 13: Comparing 3D-BLM and 3D-FEM in terms of displacements along X (left) and Z (right) 

Figure 15: Stress field CXX at different cross-sections (30%, 50%, 70% span) for F=5000kN 

Figure 16: Stress field CθX at different cross-sections (30%, 50%, 70% span) for F=5000kN 

Figure 17: Stress field CRX at different cross-sections (30%, 50%, 70% span) for F=5000kN 

The results shown in this example, which are based on the formulas derived in section 3.2, 
confirm once again the effectiveness of our modeling approach in terms of computational ef-
ficiency and accuracy with respect to nonlinear 3D-FEM approaches. Other examples can also 
be found in previous works (e.g. [6,8,21]), which address other geometries and load cases. 
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5 CONCLUSIONS  
Non-prismatic beamlike bodies are characterized by non-uniform cross-sections, yielding  

stress distributions not predicable via prismatic beam theories and requiring non-prismatic 
beam models. This paper has illustrated a modeling approach for non-prismatic beams subject 
to large displacements, 3D cross-sectional warpings and small strains. Specifically, it provides 
a computationally efficient and accurate model that accounts for the main geometric features 
of such elements (e.g. taper) and provides the stress fields as linear combinations of 1D strain 
measures and geometric parameters, with the coefficients of such linear combinations to be 
computed only once for a given cross-sectional shape as solutions of PDEs, a fact which helps 
reducing the computational effort required to solve the 3D nonlinear problem. 

Two test cases have been presented to illustrate how the model can be used and which re-
sults it can provide. Analytical results have also been obtained, have been included in the nu-
merical version of the model (3D-BLM) and have been compared with the results of nonlinear 
3D-FEM analyses, confirming the efficiency and accuracy of the approach. Apart from the 
most theoretical outcomes of the model, it can be particularly useful for the design and opti-
mization of non-prismatic elements used in engineering: in particular, on the one hand the 
closed-form formulas obtainable from the model can help an engineer since the preliminary 
design tasks; on the other hand, the model implemented in a numerical code can be used for 
multi-objective optimization tasks thanks to its computational efficiency and accuracy. 

The results presented in this paper in terms of stress and strain fields have addressed the 
cross-sectional out-of-plane deformations and the corresponding PDEs. Investigations about 
the in-plane deformations and their PDEs would also be important, along with an analytical 
study about the effects of other geometric features (e.g. centre-line curvature) and those of the 
material non-homogeneity and anisotropy. An overview of other geometries that admit analyt-
ical closed-form solutions would also be interesting, plus other numerical examples validating 
the proposed modeling approach against other geometries and load cases. All such topics will 
be addressed in subsequent works.
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Abstract. Genetic Programming (GP) has been used in a variety of fields to learn the rela-
tionships between physical measurements of real-world problems. In this article, we combine
different techniques from the area of evolutionary optimization and, particularly, GP to solve a
fluid-dynamics problem: the Stokes flow around a rigid sphere. This serves as the starting point
to explore the potential of applying different GP techniques to such complex physical problems.
From the definition of the considered fluid-dynamics problem, six benchmark instances with
different lengths and complexities are derived. We use single- and multi-objective GP methods
and compare their performance using different objective functions. More precisely, we study
how model complexity, correlation and the consistency with physical laws (i.e. physical units
of measurement) can be included as different objective functions, and whether their inclusion
is beneficial to the overall search process. In addition, we include the concept of Coopera-
tive Coevolution, which maintains multiple independent populations of solutions, into our GP
implementations and explore the capabilities and limitations of such coevolution-based opti-
mization. We further propose a novel multi-phase approach, which alternates in the GP process
between phases of traditional optimization and a mutation-only phase to reduce the model com-
plexity. The results indicate that using multi-objective optimization is beneficial to the search
process and can help finding numerically correct solutions to the problems, especially when in-
cluding a transformed Spearman correlation as an additional optimization goal. Furthermore,
the inclusion of the physical units of measurement also helps guide the GP toward numerically
correct and physically meaningful equations. While the concept of coevolution did not lead to a
superior performance in all cases, the precomputation of additional features, and the resulting
reduction of the function set of the GP, leads to a drastic increase in performance and enables
the algorithms to solve even the most complex of our benchmark instances. In the future, we
aim to extend this research to more complex flows with multiple spheres and at higher Reynolds
numbers, which involve a large number of input features.
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1 INTRODUCTION

GP has been applied to a variety of applications to relate the physics of real-world phenom-

ena to their experimental measurements or numerical simulations. Typically in physics and

engineering applications, the goal of the optimization is not only to numerically predict vari-

ables accurately, but also to gain insight into the underlying physics and relations between input

variables. In that regard, the fact that GP produces human-readable mathematical models is

an advantage compared to other approaches such as Neural Networks (NN). In this article, we

combine different techniques from the area of multi-objective evolutionary optimization and

GP to solve a classical fluid-dynamics problem: the Stokes flow around a rigid sphere.

The fluid flow around a fixed rigid sphere is governed by a set of non-linear partial differ-

ential equations, the Navier-Stokes (NS) equations, and its nature depends upon the Reynolds

number, Re, a dimensionless quantity characterizing the ratio of inertial effects over viscous

effects within the fluid. Owing to the non-linearity of the NS equations, there is no general

analytical solution to this fluid-dynamics problem. However, when Re → 0 (also referred to as

the Stokes limit, or Stokes flow) the NS equations can be approximately linearized, and an ana-

lytical solution to the steady-state flow over a sphere of radius a, subject to the far-field velocity

u∞, can be derived [20]. The streamlines of this flow are shown in Fig. 1.

The application of GP to this fundamental flow problem serves as a starting point for ex-

ploring the capabilities of different GP techniques in predicting the behavior of complex flows,

such as particle-laden flows. To that end, we derive in this work six test problem instances

with different lengths and complexities, as to benchmark and compare different GP approaches

and their ability to recover the analytical expression of this flow. Four different algorithm vari-

ants using classical methods as well as techniques from the field of coevolutionary optimization

methods are compared. In the field of evolutionary optimization, the co-evolution of different

components of the solutions has become increasingly popular in recent years, and this concept

has also been applied to GP [e.g. 19]. In addition to using the concept of Cooperative Coevolu-

tion (CC) and a special multi-Phase GP approach, we investigate the use of multiple objective

functions for the optimization. The single-objective fitness optimization is compared with 2-, 3-

and 4-objective versions of the different algorithms, resulting in 32 different algorithms to solve

the benchmark instances. As far as physical or engineering applications are concerned, a trained

model that explains the connection between input and output data should also be consistent with

the laws that govern their evolution. This means that, even though numerically correct predic-

tions can be obtained, for instance, by adding a length and a time, such solutions are not in line

with physical units and therefore of little value. For this reason, we additionally formalize the

consistency with the law of physics as an objective. We furthermore include the correlation and

complexity of the model as two objective functions. Our experiments also discuss the possible

influence of incorporating expert knowledge and the precomputation of features on the perfor-

mance of the GP process. The insights provided by this study serve as a basis for exploring the

capabilities of GP in solving complex fluid-dynamics problems.

The remainder of this article is organized as follows. In Section 2, we derive the Stokes flow

around a rigid sphere and discuss its utility for the modeling of particle-laden flows. In Sec-

tion 3, we briefly outline the basics of Genetic Programming and the approaches that have been

used in the literature so far with regard to Cooperative Coevolution and the inclusion of phys-

ical measurements in the GP process. Subsequently, in Section 4, we introduce our proposed

GP variants and the objective functions we use in the optimization process. The benchmark

instances and their corresponding function- and terminal sets are outlined in Section 5. Finally,
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we shows the results of our experimental evaluation in Section 6, and the article is concluded in

Section 7.

2 THE STOKES FLOW AROUND A SPHERE

Flows that are laden with particles are at the heart of many natural processes and engineering

applications, ranging from the flow of sediments in river beds to the combustion of fuel and

biomass in furnaces. Understanding and predicting such processes typically require the devel-

opment of reduced models to estimate the hydrodynamics forces acting on a particle carried

within a flow, based on the averaged properties of that flow. When viscous effects dominate in-

ertial effects, the Reynolds number of a rigid spherical particle of radius a, subject to a far-field

flow with velocity u∞ (‖u∞‖ = u∞), satisfies

Re =
2 a ρ u∞

μ

 1 , (1)

where ρ and μ are the density and viscosity of the fluid, respectively. It this regime, it is possible

to derive an analytical solution of the flow around the sphere, which is axi-symmetric about the

direction of the far-field velocity. In a spherical coordinate system whose origin is the center

of the sphere, and whose zenith is aligned with u∞, this flow can be expressed in terms of the

stream-function

ψ(r, θ) = u∞ sin2 θ

(
r2

2
+

a3

4 r
− 3 a r

4

)
, (2)

which results in the velocity field

ur(r, θ) =
1

r2 sin θ

∂ψ

∂θ
= u∞ cos θ

(
1 +

a3

2 r3
− 3 a

2 r

)
, (3)

uθ(r, θ) = − 1

r sin θ

∂ψ

∂r
= −u∞ sin θ

(
1− a3

4 r3
− 3 a

4 r

)
. (4)

This, in turn, enables the direct calculation of the resultant of the fluid forces acting on that

particle [20], which reads

F = 6 π aμu∞ . (5)

As soon as inertial effects become significant or if other particles are present in the vicinity

of the particle under consideration, it becomes impossible to derive such an analytical solution,

and one must rely on the results of experiments or numerical simulations to estimate the fluid

forces acting on the particle. Owing to the human-readable nature of the models it produces,

GP has the potential to provide a new insight into the non-linear physics of the flow through

ensembles of particles at varying Reynolds number, and can therefore lead to the development

of better reduced models for studying the behavior of particle-laden flows. In the following

sections, and with the aim to explore this potential, we apply GP to the case of the Stokes

flow around a fixed rigid sphere and study its ability to recover the analytical expressions of its

velocity field, as given in Eqs. (3) and (4). The six benchmark instances that we derive from the

Stokes problem are described in detail in Section 5.

3 GENETIC PROGRAMMING AND RELATED WORK

Genetic Programming (GP) is a subfield of Evolutionary Algorithms (EA) and was popular-

ized by the work of Koza [9]. EA makes use of the Darwinian principle of survival of the fittest
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Figure 1: Streamlines of the Stokes flow around a rigid sphere, colored by the magnitude of

velocity.

in order to optimize a given problem. Hence, a problem-dependent fitness function is used to

evaluate the quality of a solution, usually in terms of how well the prediction of the GP model

matches the training data that serves as input. Inside the GP process, evolutionary principles

(selection, recombination of models, mutation operators) are used to perform a guided search

towards optimal solutions. This way, promising individuals are created and refined iteratively

until a stopping criterion is reached.

Evolutionary Multi-objective Optimization (EMO) is an important subfield of EA. Multi-

objective Optimization Problems (MOOP) have not only one, but multiple objective conflicting

functions that are to be optimized simultaneously. Mathematically, a multi-objective optimiza-

tion problem can be formulated as follows:

min f(x) = (f1(x), f2(x), ..., fm(x))
T

s.t. x ∈ Ω
(6)

A MOOP maps the search space Ω to the objective space M of dimension m. The definition

of Ω depends on the encoding used for the problem. While in classical EAs, such encodings

are often vectors of binary or real numbers, in the field of GP, the search space is the set of all

possible models that can be created using the provided terminal symbols T and functions F .

Since the problem consists of more than one objective, one single optimal solution cannot be

ascertained anymore. Instead, the concept of Pareto-dominance is used in many of the existing

EMO algorithms. A solution x1 is a solution that dominates the solution x2 if the following

conditions are met [4]: (1) The solution x1 is no worse than x2 in all objectives, i.e. fj(x1) ≤
fj(x2) for all j = 1 . . .m. (2) The solution x1 is strictly better than x2 in at least one objective,

i.e. fj(x1) < fj(x2) for at least one j = 1 . . .m. The solution of a MOOP is a set of so-called

Pareto-optimal solutions which are not dominated by any other solution in the search space

Ω. By using the concept of domination together with other principles, EMO algorithms aim to

provide an approximated set of Pareto-optimal solutions.

Applying the principles of evolution, GP aims at identifying a relation between a given input

and output. A solution in GP is represented by a syntax tree consisting of terminals (input

variables) and functions that are applied to them. This tree can be parsed into an executable

program or equation. Special mechanisms for recombination and mutation on a syntax tree

during the evolutionary process are required: For example, crossover can be performed by

exchanging branches of two tree individuals; Mutation can be performed by replacing one node

or branch by an other randomly chosen node or branch. For the fitness function, a distance
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measure between the produced and the desired output is often used such as the rooted mean

squared error.

In the basic version of GP, the execution of the program manipulates numerical values with-

out considering their physical units. This leads to situations in which non-physical solutions

can be produced; a result which is of little interest for physics or engineering applications. The

consideration of physical units inside GP was first proposed in [8], where special operators were

applied in order to repair incompatible units. As an example: an operation adding a length and

a time is repaired by artificially transforming a time into a length. This concept inspired mul-

tiple other works and has, since then, been implemented in single- as well as multi-objective

GP algorithms [e.g. 1, 15, 6]. A different development line in dimensionally aware GP focuses

on grammar-based GP, where constraints given by physical laws are already included in the

rules of the programming grammar [e.g. 14, 18]. Another noteworthy concept was presented

in [21], where strongly typed GP was used to generate viable method call sequences for soft-

ware testing. This approach limits the search space only to feasible solutions and could be

transferred to our problem by only allowing for dimensionally meaningful operations. A recent

work on dimensionally aware GP was presented in [12], where an approach similar to ours is

proposed: For each dimensionally incompatible GP operation, a penalty is calculated and ag-

gregated throughout an individual. Minimizing this penalty value is an additional objective of

the algorithm. Unlike the previously mentioned works, this method allows the initialization of

physically non-meaningful solutions and enables them to develop towards physically meaning-

ful solutions.

In most applications, GP has been used on a relatively small feature space, and research

on high-dimensional GP for regression problems remains sparse. Some work has been done

recently to include concepts like Cooperative Coevolution (CC) into the field of GP [e.g. 19],

which has been used in many evolutionary algorithms as a successful optimization technique

[e.g. 2, 23]. While CC, and more specifically the separation of solutions into multiple com-

ponents, has mostly been used in the EA community as a technique to solve high-dimensional

problems [22], CC-based approaches have been used in GP mostly as a way to boost per-

formance, irrespective of the number of features. Applying Cooperative co-evolutionary GP

(CCGP) on a problem requires (1) splitting the original feature space into smaller sets to cre-

ate subsolutions as well as (2) merging partial solutions into one combined solution. In [19],

the authors identified three different levels on which the merging of partial solutions in CCGP

can be performed: genotype, feature and ensemble level. While fusion on a genotype level is

the equivalent of the method originally proposed by Potter and De Jong [17] for evolutionary

algorithms, fusion on feature [10, 11] and ensemble level [5, 13, 16] have been studied more

extensively in the literature. The evaluation of the three proposed approaches on an image

denoising problem showed that the ensemble method performed best on the given task. The

authors also demonstrated that Cooperative coevolution can boost the performance of GP on

high-dimensional problems compared to other modern, non-CC GP approaches.

4 PROPOSED METHODS

In this work, we explore the potential of various combinations of GP-techniques for solving

Stokes Flow-related benchmarks. We use CC-based single- and multi-objective GP methods

and compare their performance using different objective functions. More precisely, we inves-

tigate how length, correlation and the consistency with physical laws (i.e. physical units of

measurement as, for instance, introduced in [8]) can be included as different objective func-

tions, and whether their inclusion is beneficial to the overall search process. In total, we use
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four different variants of GP, along with 8 combinations of objective functions, which results

in 32 different optimization methods. In the following paragraphs, we start by describing the

four base-algorithm variants, before going into the details of the proposed objective function

combinations.

4.1 Algorithm Variants

Standard GP: The first algorithm used in this article is a standard GP algorithm, abbreviated

as S-GP, which is based on a classical (μ+ λ)-reproduction scheme and follows its implemen-

tation in the deap-framework1. The algorithm produces in each generation from a population

of size μ a set of λ offspring solutions, which are then evaluated. The best out of the (μ + λ)
solutions are taken over to the next generation of the algorithm. This environmental selection

follows the procedure of the NSGA-II algorithm [3], while the selection of the parent-solutions

for the reproduction are chosen at random. The new λ solutions are created either by repeat-

edly recombining two random solutions from the current population, or by applying mutation

to a random individual. The mutation and recombination operators are selected at random from

different operators every time a recombination/mutation is carried out.

For recombination, the algorithm chooses between two crossover operators: One-point crossover

randomly selects a cut-off point in two individuals and swaps the selected branches. Leaf-based

one-point crossover does so as well, while giving higher probability to leaves being exchanged

between individuals rather than entire branches. For mutation, the algorithm chooses between

uniform mutation, node replacement, insertion mutation and shrink mutation, all of which are

chosen with equal probability. The uniform mutation replaces a randomly selected subtree by

a randomly generated new branch. Node replacement, as the name suggests, chooses one node

at random and replaces this function- or terminal-symbol with another one of the same arity.

The insertion mutation creates a new subtree and inserts it at a random position, using the pre-

vious branch on that position as a subcomponent of the created subtree. Shrink mutation aims

at decreasing the size of an individual by replacing a branch with one of its arguments.

Multi-Phase GP: The second algorithm is a Multi-Phase GP (MP-GP). The MP-GP is a vari-

ation of the S-GP above, which alternates between two phases of optimization behavior. In the

first phase, the algorithm behaves identically to the S-GP. In the second phase, the crossover op-

erators are disabled and the probabilities of the mutation operators to choose from are changed.

More precisely, in this second phase of the optimization, the algorithm only applies node re-

placement mutation and shrink mutation, where the former is chosen with a probability of 2/3
and the latter with a probability 1/3. This two-stage approach avoids extensive growing of the

models and allows refinements through a frequent mutation of the population. This proves par-

ticularly useful since not all of the algorithm variants employ the length of the individual as an

objective, which in turn can lead to extensive growing of the trees. Another issue which was

often observed in initial experiments is that solutions which only differ from an optimal model

in one node may obtain a bad fitness, and using crossover is not likely to produce the required

small change. Moreover, the replacement of one node may have a large impact on the actual

fitness (for instance, changing an addition into a subtraction), which results in a less smooth

fitness landscape. Therefore, enabling the algorithm to perform this second phase with a focus

on small adjustments and shrinking the tree can be beneficial to find optimal solutions.

1https://github.com/DEAP/deap
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Algorithm 1 Pseudocode of the Coevolutionary Genetic Programming (CC-GP)

Input: Training Data X , Terminals T , Functions F , Crossover probability pc, Mutation prob-

ability pm, Number of subpopulations v
Output: Set of non-dominated Solutions S

1: S0 ← Random initial population of Solutions for upper-level GP

2: r0 ← Choose random solution from S0 as representative

3: A0 ← Empty Pareto-dominance-based Archive

4: for i = 1 to v do
5: Si ← Random initial population of Solutions for i−th lower-level GP

6: ri ← Choose random solution from Si as representative

7: Ai ← Empty Pareto-dominance-based Archive

8: end for
9: repeat

10: for i = 1 to v do
11: if i is part of r0 then
12: Si, Ai ← Optimize Si using standard GP for k generations

13: ri ← updateRepresentative(Ai)

14: else
15: ri ← Choose random solution from Si as representative

16: end if
17: end for
18: S0, A0 ← Optimize S0 using standard GP for k generations

19: r0 ← updateRepresentative(A0)

20: until total #Evaluations used

21: return
⋃v

i=0 Ai

Cooperative-Coevolution-based GP: Our CC-based approach, abbreviated CC-GP, divides

the problem into multiple, independent populations, with the intent that each population could,

in theory, evolve different aspects of the original problem. As a result, multiple transformed fea-

tures are created which serve as inputs to another, higher-level GP process. Lower- and higher-

level GP populations are evolved cooperatively to enable the prediction of complex physical

relationships in the data. This means that function evaluations are only carried out coopera-

tively, by taking a representative from each of the lower-level and upper-level populations and

building a combined individual which is then evaluated using the training data.

The structure of the CC-GP algorithm is shown in Algorithm 1. In the main loop of the

algorithm, each lower-level population (sometimes also referred to as subpopulation) is evolved

using the standard GP method for a fixed amount of generations. After the last iteration of

each population’s optimization process, a representative solution is chosen from the current

population, and this representative is used in the subsequent function evaluations of the other

populations. After all lower-level populations have been evolved, the higher-level GP is used

to optimize models that represent combinations of the representatives of the lower-level pop-

ulations. The upper-level population uses only these representatives as input features, while

the lower-level populations operate on the terminal set and input features that are given by the

problem (i.e. that are also used in the above S-GP and MP-GP).

In order to use the computational budget more efficiently, the conditional statement of line

11 in Algorithm 1 is used to check whether the current, about-to-be-optimized subpopulation is

part of the current representative of the upper-level population. If that is not the case, then the
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optimization of the lower-level population would be meaningless, since all function evaluations

would return the same values (as they only depend on the values of all other representatives).

Therefore, we assume that if a population i was not used in the current upper-level GP, the

feature that was given by the representative of subpopulation i may not have been useful, and

we replace it with a new, random representative.

Multi-Phase CC-GP: The last algorithm considered in this work, MP-CC-GP, is a combina-

tion of the two methods described above. It follows the same structure as the CC-GP, with the

addition that it also alternates between the two optimization phases. The switch between the

normal optimization (including crossover) and the mutation-only phase is done at the beginning

of the main loop, i.e. the algorithm optimizes each lower-level and the upper-level population

once with crossover and mutation, followed by one iteration with mutation only, as described

above.

4.2 Objective Function Specification

To examine the effect of different objective functions, and the benefit of using multi-objective

GP as opposed to a single-objective version, we define four different fitness functions. They

are related to the quality of the prediction, the correlation with the training data, the physical

correctness of the produced equations, and the complexity of the model. These four fitness

functions are used in different combinations in the experiments below.

Maximum Absolute Error (f1): The first objective function is related to the error between

the prediction of the GP-produced model and the actual, expected output in the data set. Since

we are interested in an accurate prediction of the physical relationship between the data, we

decided to use the maximum absolute error over the data set, i.e. during the training, the value

of f1 is the absolute error of the worst data point within the training data set. By using the

maximum error, we obtain a solution which guarantees that all predictions have at least a certain

quality. Preliminary experiments have shown that this leads more often to exact and physically

correct models compared to the rooted mean squared error.

Transformed Spearman Correlation (f2): The second objective function is a transformed

version of the Spearman Correlation ρ between the data set and the predictions. By using

this correlation coefficient to guide the optimization, the GP algorithm may favor models which

themselves are not numerically accurate, but are highly correlated with the desired output. Such

models can, for instance, be multiplicative or additive components within a numerically correct

model. A multi-objective EA optimizing f2 has the ability to keep such models in the population

over the generations, which can then be used in subsequent recombination steps to approximate

numerically correct results. As an example, the term u∞ · cos(θ) in Benchmark Instance 3 (see

below) would show a high correlation with the data set, even though the actual prediction of the

outcome ur may still be poor. An EA which optimizes with regard to f2, however, may consider

this as a good solution and keep it in the population for further refinement.

To utilize the correlation coefficient in the optimization, we transform its value to fit our

requirements. The range of ρ lies between -1 and 1, with a high coefficient indicating a strong

positive (non-linear or linear) correlation, and a low value of ρ indicates a strong negative cor-

relation. Both cases are, however, useful for the optimization, as building blocks with a strong

negative correlation may still be helpful when used in a subtraction, for instance. In addition, our
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objective function are always minimized, which leads to a transformed objective f2 := 1− |ρ|.
The worst possible value of f2 is 1.0, which indicates no correlation at all, while smaller values

of f2 indicate some kind of connection (positive or negative) between the model and the data

set.

In the CC-based approaches, a small adjustment is made to this objective: When the opti-

mization of one of the lower-level populations is carried out, the value of f2 is computed using

the output of only the current individual of the subpopulation (which represents only a branch

within the whole, combined tree model). In contrast, the upper-level GP uses the actual predic-

tion from the combined model (i.e. the model that incorporates all lower-level representatives

into the upper-level one). This way, the GP judges the features developed by the lower-level

GP processes based on how correlated this feature is with the target data, and therefore obtains

a more accurate measure of how useful the developed feature of this subpopulation is to the

whole, combined, CC-based optimization.

Dimension Penalty (f3): As explained previously in this article, it may be useful to guide the

optimization as to find physically correct models, which (1) do not violate the laws of physics in

their calculations and (2) predict the same unit of measurement as the unit of the target variable.

To achieve both of these goals, we model the third objective function f3 in the following way.

In our approach, contrary to the method used in [8], we do not use a special operator to

adjust units to each other. Instead, whenever incompatible units are used in an operator, the

operation is still carried out on the numerical values of the arguments, and the unit of the first

input argument is used as the unit of the result of the node (e.g. in case a length and a time

are added, the operation is carried out and the result is considered to be a length). To guide the

search towards evolving physically meaningful equations, a penalty value of 1.0 is added every

time such a nonphysical operation is carried out. This penalty value is accumulated along the

tree together with the outputs of each function node. As a result, the root of the tree returns a

value for the prediction of the training data, its physical units and a value for the total penalty

occurring in the execution of that tree. Since we know that the expected result is a model that

outputs, for instance, a velocity, any physical unit that is not expressed in meters/second
is not meaningful for the purpose of the application. Therefore, an additional penalty based

on the difference between the obtained units of the tree and the expected units of the output is

added. This additional penalty is based on the distances between the exponents of the SI-base

units (plus the unit radian for angles in this work) of which the final unit is composed. As an

example, velocity can be written as m1 · s−1. If our model output a result in the units m2 · s3,

the distances in the respective exponents are summed up as |1 − 2| + | − 1 − 3| = 1 + 4 = 5.

The value of the objective function f3 is defined as the sum of the accumulated penalty during

tree executing and the dimension-penalty for not matching the correct output units.

Length of Individual (f4): The last of the four objective functions considers the length of

the model, i.e. the number of nodes (function and terminal symbols) that are used to represent

the model in its tree-based representation. This can be seen as a measure of the complexity

of the model in terms of necessary mathematical operations. In the literature, the length of

the solutions is often used in a weighted sum together with the fitness / error to avoid extensive

growth of the trees. In our approach, instead, we employ the length as its own objective function.

In the CC-based algorithms, the length refers to the length of the complete, combined individual,

i.e. the model that incorporates all lower-level trees into the upper-level one.
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4.3 Conflicts of Objective Functions

In contrast to the usual assumption in multi-objective optimization that the objective func-

tions are somewhat in conflict with each other, this does not have to be the case between f1 and

f2. It is clear that the model which perfectly optimizes f1 will also produce an optimal value for

f2. This property may, however, not be true in earlier generations of the GP, since there exist op-

timal solutions with regard to f2 with very poor performance in f1. A similar expectation can be

formulated for the relation between f1 and f3, although conflict may be stronger between these

two functions. It is, on the one hand, clear that the optimal model for f1 may, most probably,

also be physically correct. This however is only true if there exists an actual physically correct

relationship between the variables, which does not have to be the case for all applications. On

the other hand, it is easy to construct solutions which are physically correct and match the units

of the target variable, but perform horribly in a numerical sense with regard to f1 and f2. In

conclusion, we can assume that there is, at least for sub-optimal solutions, a conflict between

all four objective functions, although we can expect the conflict to vanish, the closer the models

get to an optimal prediction of the data. It should also be noted that a vanishing conflict is, for

our application, desirable, since the objectives f2 and f4 are merely tools to guide the algorithm

to better solutions, while the objectives that are actually important for the application are f1 and

f3.

5 BENCHMARK INSTANCES, FUNCTION SET AND TERMINAL SET

From the definition of the fluid-dynamics problem described in Section 2, we derive six

problem instances with varying complexities, alongside with the used function and terminal

sets. In the following, besides the variables and derived features of the problem, the terminal

sets T include a set of constants, which we set as C = {4, 3, 2, 1, 1
2
, 1
4
}.

Benchmark Instance 1: Predict |u| from ux and uy.

|u| =
√

u2
x + u2

y (7)

Instance 1 is a rather simple equation and involves only 2 variables. To solve this in-

stance, 4 computational operations are necessary (two multiplications or square-operations,

one addition and one square root operation). The function set for this instance is given as

F = {+,−,×, ◦2, ◦3, 1◦ , sin(◦), cos(◦),√◦} and the terminal set as T = C ∪ {ux, uy}, where ◦
denotes the input of the unary functions.

Benchmark Instance 2: Predict ux from ur, uθ and θ.

ux = ur · cos(θ)− uθ · sin(θ) (8)

Instance 2 is more complex, first due to its length (3 variables and 5 computational opera-

tions), but also due to the inclusion of trigonometric functions. Compared to the other unary

functions such as the square root, the power function or the multiplicative inverse, the trigono-

metric functions sin(◦) and cos(◦) are not monotonously increasing or decreasing with their

input argument. Therefore, the fitness landscape in this problem instance may be more com-

plex, and finding the optimal model to solve it may be more challenging for the GP variants.

The function set for this instance is given as F = {+,−,×, ◦2, ◦3, 1◦ , sin(◦), cos(◦)} and the

terminal set as T = C ∪ {ur, uθ, θ}.
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Benchmark Instance 3: Predict ur from u∞, θ, a and r.

ur = u∞ · cos(θ) ·
(
1 +

a3

2 · r3 − 3 · a
2 · r

)
(9)

Instance 3 is the most complex and involves 4 variables and 13 computational operations

(given its function set F , defined below) in its simplified form as given in Equation (9). How-

ever, the GP may not necessarily end up with the simplification of multiplying the first two

terms after the addition and subtraction in the parenthesis, and the expanded form of this equa-

tion needs 19 operations. Instance 3 further involves a trigonometric function, which adds the

same additional complexity as described in Instance 2. The function and terminal sets for this

instance are F = {+,−,×, ◦2, ◦3, 1◦ , sin(◦), cos(◦)} and T = C ∪ {a, r, u∞, θ}.

Benchmark Instance 4: The basic relation between input and output variables in Instance 4

is identical to the one in Instance 1, i.e. the same equation needs to be learned. However, to

examine the effect of preprocessing variables using expert knowledge or other computational

techniques, we change the terminal and function sets compared to Instance 1. We use some

of the unary function operators in the original set F and perform their operation of the input

variables ux and uy. As a results, we obtain a smaller set of functions, but in exchange a

much larger set of terminal symbols for the GP process. The sets for Instance 4 are F =
{+,−,×,

√◦} and T = C ∪ {ux, uy} ∪ {u2
x, u

3
x,

1
ux
, u2

y, u
3
y,

1
uy
}. Since we assume that the

functions sin(◦) and cos(◦) can only be applied to angles in order to be physically meaningful,

these two functions are not used on the velocities ux and uy. While the effect of a much larger

terminal set is explored in our experiments (see Section 6.4), from a theoretical point of view

Instance 4 is less complex than Instance 1, since only two operations are now necessary to

assemble the correct equation.

Benchmark Instance 5: Instance 5 follows the same equation as Instance 2, but with changed

function and terminal sets, as done in Instance 4. Again, trigonometric functions are applied

to angles, while the other functions are applied to the velocities. As a result, we obtain F =
{+,−,×} and T = C ∪ {ur, uθ, θ} ∪ {u2

r, u
3
r,

1
ur
, u2

θ, u
3
θ,

1
uθ
, sin(θ), cos(θ)}.

Benchmark Instance 6: As done in Instances 4 and 5, we derive Instance 6 from the equation

of Instance 3 and change the function and terminal sets to F = {+,−,×} and T = C ∪
{a, r, u∞, θ} ∪ {a2, a3, 1

a
, r2, r3, 1

r
, u2

∞, u3
∞, 1

u∞ , sin(θ), cos(θ)}. As a result, while the terminal

set is much larger than that of Instance 3, the complexity in terms of the necessary number of

operations is smaller (10 operations).

For the above-mentioned benchmark instances, we create a data set of 366 data points using a

far-field velocity u∞ = 1.0 and a radius of the sphere of a = 1.0. The data set is randomly split

in an 80/20 ratio, i.e. into 292 data points in the training set and 74 data points in the test set.

6 EVALUATION

In conducting experiments, we aim to compare various aspects of the algorithms and to com-

pare the problems with each other. More precisely, we aim to answer the following questions:
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1. How are the numerical performance and physical correctness of the results affected by

the inclusion of additional objectives, especially of correlation and dimension-penalty?

(Section 6.1)

2. How do the Cooperative Coevolution-based GP methods perform compared to the classi-

cal approaches? (Section 6.2)

3. How is performance affected by the multi-phase approach with additional mutation-only

phases? (Section 6.3)

4. How is performance affected by the precomputation of features, and the corresponding

changes in the function- and terminal-sets of the GP? (Section 6.4)

In this section, we answer these questions in detail by comparing the results of 32 combina-

tions of algorithms and fitness functions on the six benchmark instances described in Section 5.

The first objective function f1 is always part of the optimization, and is paired with all possi-

ble combinations of the other three objectives, as seen in Table 1. For each algorithm variant

and benchmark instance, we perform 31 independent runs. The parameters are set as follows:

The population size is μ = λ = 2000 for all algorithms. The probabilities for crossover and

mutation are set to 0.5 and 0.5 respectively, except in the Multi-phase approaches, where no

crossover is used and the mutation probability is set to 1.0 instead. The number of generations

before a switch between normal optimization and mutation-only phase is set to 20. In the CC-

based algorithms, all populations are optimized for 20 generations before moving on to the next

one, and a switch of the phase in the CC-MP-GP is done once all lower-level and the upper-

level GPs have been optimized once. The number of lower-level populations in CC-GP and

CC-MP-GP is set to 2. In the leaf-based one-point crossover the probability to select a terminal

symbol is set to 0.9. The maximum depth of the initial random solutions is set to 4. During

the optimization, created solutions are restricted to a maximum length of 50 for the S-GP and

the MP-GP, and a maximum length of 15 for the CC-based variants. The smaller limit in the

CC-based algorithms applies to each population, but the combination of the representatives to

form one final individual can, of course, still create much longer models. All experiments stop

after 1, 600, 000 function evaluations, i.e. after 800 generations of optimization. The algorithms

are implemented using the deap-framework2 version 1.3.1 [7] and the pint package3 version

0.16.1.

In order to examine the quality of solutions, Table 1 shows the results of the experiments in

terms of success rates, i.e. the numbers show how many out of the 31 runs achieved a certain

goal. We compare two different types of success rates:

1. The first number represents the physical and numerical success rate. It shows how many

runs have achieved a perfect numerical results, which we consider as f1 < 1e−15 and at

the same time delivered a model that satisfies f3 = 0 and therefore delivered the correct

units of measurement in a physically correct way.

2. The second number in each cell shows the numerical success rate only, i.e. how many

models delivered a maximum absolute error of f1 < 1e−15, regardless of an existing

dimension penalty in f3.

2https://github.com/DEAP/deap
3https://github.com/hgrecco/pint
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Objectives 1 2 3 4 5 6

S-GP

f1 - / - 1 / 1 - / - 30 / 31 2 / 4 - / 17

f1, f2 30 / 31 1 / 1 - / 5 31 / 31 3 / 5 - / 31

f1, f3 2 / 2 - / - - / - 31 / 31 18 / 18 7 / 7

f1, f4 - / - - / - - / - 31 / 31 10 / 10 - / -

f1, f2, f3 31 / 31 8 / 8 13 / 13 31 / 31 25 / 25 27 / 28

f1, f2, f4 31 / 31 - / - - / - 31 / 31 11 / 13 - / 4

f1, f3, f4 - / - - / - - / - 31 / 31 13 / 14 - / -

f1, f2, f3, f4 31 / 31 1 / 1 - / 1 31 / 31 29 / 29 - / 6

MP-GP

f1 - / - - / - - / - 28 / 30 3 / 4 - / 17

f1, f2 30 / 30 3 / 3 - / 3 31 / 31 3 / 5 - / 31

f1, f3 - / - - / - - / - 31 / 31 17 / 18 7 / 7

f1, f4 - / - - / - - / - 31 / 31 3 / 3 - / -

f1, f2, f3 30 / 30 6 / 6 4 / 7 31 / 31 25 / 25 22 / 22

f1, f2, f4 28 / 28 - / - - / - 31 / 31 4 / 4 - / -

f1, f3, f4 1 / 1 - / - - / - 31 / 31 2 / 2 - / -

f1, f2, f3, f4 31 / 31 - / - - / - 31 / 31 14 / 14 - / -

CC-GP

f1 1 / 1 - / - - / - 16 / 17 9 / 11 - / 1

f1, f2 29 / 31 - / - - / - 29 / 31 5 / 7 - / 8

f1, f3 4 / 4 - / - - / - 26 / 26 14 / 14 - / -

f1, f4 - / - - / - - / - 28 / 28 2 / 2 - / -

f1, f2, f3 27 / 27 6 / 6 - / - 29 / 29 24 / 24 2 / 3

f1, f2, f4 31 / 31 - / - - / - 31 / 31 5 / 8 - / -

f1, f3, f4 1 / 1 - / - - / - 22 / 22 11 / 12 - / -

f1, f2, f3, f4 28 / 28 - / 1 - / - 29 / 29 15 / 17 - / -

MP-CC-GP

f1 - / - - / - - / - 19 / 20 8 / 9 - / 3

f1, f2 30 / 31 - / - - / - 30 / 30 4 / 7 - / 9

f1, f3 2 / 2 - / - - / - 28 / 28 20 / 20 - / 1

f1, f4 2 / 2 - / - - / - 28 / 28 1 / 1 - / -

f1, f2, f3 28 / 28 5 / 5 - / - 29 / 30 21 / 21 - / 4

f1, f2, f4 30 / 30 2 / 2 - / - 29 / 29 3 / 4 - / -

f1, f3, f4 2 / 2 - / - - / - 21 / 21 4 / 4 - / -

f1, f2, f3, f4 29 / 29 - / - - / - 29 / 29 12 / 12 - / -

Table 1: Success rates for the six benchmark instances in terms of numerically and physically

correct results (first number) and numerically correct results only (second number). A value of

0 is shown as a dash.

In addition, we take a close look at the actual numerical results. Table 2 shows the average

values obtained for f1 over the 31 independent runs. For each of the benchmark instances

(each of the columns), the respective best performance is marked in bold. A one-sided Mann-

Whitney-U statistical test was performed for each algorithm to test whether its performance was

significantly worse than that of the respective best algorithm for that benchmark. A difference

is considered significant for p < 0.05 and is marked with an asterisk in Table 2, while all

non-significant results are printed in bold font.

All analyses in this section are performed on the test set, which was not available to the algo-

rithms during the optimization process. In general, the observed performance in all experiments

does not differ significantly between the test set and the training set, which indicates that none

of the algorithms suffers from a large amount of overfitting.
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6.1 The Effect of Adding Additional Objectives

First, we take a look at how the final performance, numerically and physically, is impacted

by the inclusion of additional objectives.

The effect of f2: For the S-GP, we can see in Table 1 that the (f1, f2)-version achieves much

higher success rates than the single-objective version which only uses f1, especially in Instances

1, 2 and 6. This effect is even larger when looking at the other combinations with vs. without

f2. S-GP with (f1, f3) can, for instance, only solve Instance 1 twice, and cannot solve Instances

2 and 3 at all, while the same algorithm with f2 as an additional objective solves these instances

31, 8 and 13 times, respectively. Adding f2 to the 3-objective version (f1, f3, f4) increases

the performance from 0 to 31 successful runs in Instance 1 and from 14 to 29 numerically

successful runs in Instance 5. For both the S-GP and the MP-GP we observe that in none of the

objective combinations and for none of the benchmarks has the inclusion of f2 led to a decrease

in the success rates, both numerically and physically. For the CC-based algorithms, we can

observe a similar picture, with the only exceptions in Instance 5, where the (f1, f2) version

does not perform better than using f1 only. We can further observe that the effect of only

adding f2 to the f1-version of any of the algorithms in Instances 2 and 5 (which share the same

characteristics) is not as powerful as for the other problem Instances. This may indicate that

the positive effect of optimizing the correlation is weaker when non-monotonous, trigonometric

functions are involved. In conclusion, we can clearly see the benefit of optimizing correlation

in almost all of the experiments, which supports our hypothesis that this enables the algorithm

to appreciate and reuse smaller, correlated building blocks within the optimization process.

The effect of f3: The impact of the inclusion of physical meaning in the optimization process

is most interesting. In principle, this adds another layer of difficulty to the problem, as the

expectations to an optimal solution are higher than only finding a numerical optimum. When

we compare the (f1)-only algorithms with their (f1, f3) counterparts, we can see that there

are a number of instances for which there are positive effects, but the boost in performance

is not as strong as the one observed for f2. In some cases, the consideration of f3 even has

a negative effect on outcome, both numerically and physically. An interesting observation in

this case is that the effect in Instance 5 is usually positive, and that the same is true for the

most complicated Instances 3 and 6. Here, the (f1, f2) variants, especially, often did not find

any physically correct equations, even though they were able to find numerical ones. After the

inclusion of f3, the (f1, f2, f3) versions were able to find more numerically, and also physically

correct models. A reason for this may lie in the created training data. In our generated data

samples, the value for u∞ is constant. Therefore, a purely numerical optimization does not need

to multiply it to the model (see Eq. (9)) to obtain numerically correct results. A physically-aware

algorithm however, can discover this relationship in the data based on the units of measurement,

even though the data of the application may be biased in such a way. In general, even though

a strictly positive effect can not be seen in all cases, the inclusion of physical units into the

algorithm can be seen as an advancement. If the user is interested in gaining insight on the

workings of the application and what the physical relations are between the input parameters,

the slightly lower success rates may be a small price to pay for ultimately obtaining physically

meaningful models.
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The effect of f4: Using the length of a model as an optimization criteria has, in most cases,

a negative effect on the success rates of the algorithms. We can, however, observe a positive

effect in some instances for the S-GP and the CC-GP. This makes sense since the additional

mutation phase in the other two algorithms already aims to reduce the size of the models during

the optimization, while the S-GP and CC-GP may still suffer from an excessive growth of the

trees, and therefore have a higher potential to actually benefit from using f4.
In summary, we can conclude that solving GP problems with multiple objectives is certainly

superior to the single-objective version which only uses f1. It is not strictly better to use any

additional objective in all cases, but for every instance and for every algorithm there exists at

least one of the multi-objective versions that performed strictly better in both success rates com-

pared to the single-objective version. The largest benefit came from using f2, which improved

performance dramatically in almost all of the experiments.

6.2 Performance of Coevolutionary Algorithms

Next, we take a close look at the performance of the two CC-based algorithms in comparison

with their traditional counterparts. Overall, we can not observe a strictly positive effect of using

the coevolutionary approach in our experiments. For Instances 3, 4 and 6, all success rates of

the CC-GP are lower than the ones of the S-GP, and similarly the results of the MP-CC-GP are

worse than the ones of the MP-GP. We can, however, observe a certain impact for the Instances

1 and 5. In Instance 1 and one case of Instance 2, the success rates are slightly higher in the CC-

based approaches. This impact, however, is not particularly strong, and the small changes in the

success rates (e.g. 2 vs. 0 solved runs and 4 vs. 2 solved runs in the (f1, f3) algorithms) can also

be caused by statistical effects. This is also supported by the fact that the average performances

for these cases (see Table 2) do not deviate much, and in some cases the average performance is

slightly lower even though less instances are solved correctly. Therefore, we can not observe a

negative effect for Instance 1 as for some of the other instances, but the slightly higher success

rates of the CC-algorithms can also not reliably indicate a superior performance. One case

where we can observe a larger positive effect is Instance 5 when we perform a single-objective

optimization with only f1. The CC-GP variant solves 9/11 instances (physically/numerically),

while the normal S-GP only achieves success rates of 2/4. On the other hand, we can see in

Table 2 that the average fitness of S-GP is actually smaller than the one of CC-GP. To examine

this effect in more detail, we show the boxplots of the numerically best results for this case in

Fig. 2a. We can observe clearly that on the one hand, the CC-GP is able to find more results

closer to the optimum, while on the other hand suffering from a larger spread of the solutions.

The overall performance of S-GP is more robust over the independent runs, with a slightly

smaller median and smaller spread. CC-GP is more successful overall, but in turn also produces

results in some runs with a very poor performance. Looking at Fig. 2b, we observe a similar

picture, with a higher success rate but larger spread and overall lower median performance in

the CC-MP-GP compared to its counterpart MP-GP. This trade-off between higher success rates

but lower robustness can be seen as an interesting property and, depending on the application,

may be beneficial to the overall goal of the application.

6.3 Performance of the Multi-Phase Algorithms

Third, we analyze the effect of using the multi-phase approach in the algorithms. Overall,

we can observe that adding the mutation-only phase does not increase the performance by large

amounts in terms of success rates, but in most cases also does not deteriorate the performance
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(a) Standard GP and CC-GP (b) MP-GP and MP-CC-GP

Figure 2: Distribution of numerical results for benchmark instance 5 and the single-objective

f1-variants of the four algorithms.

of the algorithms. An interesting observation regards the combination with the length of the

individuals, i.e. the optimization of f4. In Instances 5 and 6, we observe that the success rates

of MP-GP drop largely for all the algorithms that optimize f4. This can be explained by the fact

that the additional mutation phase, as described above, used only operators that help to reduce

the size of the trees and therefore prevent excessive growth. If f4 is one of the objectives,

however, such operations result in a direct increase of one of the objective functions regardless

of the quality in terms of the other objectives. This may lead to a premature convergence of

the population to very short and simple individuals, from where it is more difficult to find the

optimal solutions. The same behavior can also be observed when comparing CC-GP with MP-

CC-GP. With the exception of these algorithms, a negative effect can not be observed for the

problem instances 1, 4, 5 and 6. This is also reflected in the average performance values in

Table 2, where in these instances the best performance of the S-GP is matched by the same

algorithm configuration using the multi-phase approach (i.e. the difference between the same

algorithm with and without this approach is not statistically significant). In Instances 2 and 3,

which are the most difficult to solve in our experiments, the best performance is, however, only

achieved by the S-GP, both in terms of success rates as well as average performance values.

6.4 The Effect of Precomputing Features

Lastly, we analyze the effect of feature transformation before the start of the GP process, i.e.

we compare the Instances 1, 2 and 3 with the Instances 4, 5 and 6 respectively. As described in

Section 5, the equations that need to be approximated are identical, but the last three instances

contain a much larger terminal set in exchange for a smaller function set. Such derived features

may, depending on the application, be obtained using expert knowledge or simply, as in this

work, by taking physical properties of a problem into account. The results in Table 1 show that

this precomputing step improves the outcomes significantly. For Instance 1, only algorithms

which included f2 in their optimization were able to solve this instance, with numerical success

rates of 27 to 31 solved runs, while all other algorithms were often not able to even solve a single

run. Once we precompute the features and solve the same problem with changed function-

and terminal sets, all algorithm versions of the S-GP and MP-GP are able to solve Instance 4

perfectly with success rates of 30 or 31 runs. For the CC-based algorithms, we observe the same

increase in performance, which enables all algorithms to perform superior or on par in Instance
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4 compared to Instance 1. The difference between Instances 2 and 5 is even more prominent,

as we see that Instance 2 was rarely solved by any of the algorithms, while Instance 5 is solved

reasonably often by various algorithm combinations, most notably with an almost perfect score

of 29 solved instances for the S-GP with (f1, f2, f3, f4). As a last result, we can confirm this

trend also for the instance pair 3 and 6. The precomputation of the features enables the S-GP

and the MP-GP (using (f1, f2)) to solve all 31 instances numerically correctly in Instance 6,

while they achieved success rates of only 5 and 3 respectively in Instance 3. Based on these

results, an interesting observation is that even though the feature transformation prior to the

optimization is a very simple and computationally inexpensive measure, it changes the outcome

of all GP algorithms drastically, and the magnitude of the performance enhancement is maybe

only matched by the inclusion of the correlation f2 into the optimization process.

7 CONCLUSION

In this article we have explored the possibilities of various different techniques in GP algo-

rithms to solve the regression problem for a fluid-dynamics problem: the Stokes flow around a

rigid sphere. We have derived six benchmark instances as examples of relationships that occur

in this sort of problems. Apart from numerically correct predictions, the goal of this research

was to produce models which can help researchers and engineers understand the underlying

physical mechanisms governing such applications. Therefore, we included the physical correct-

ness of the models, in terms of penalties for nonphysical operations as well as for not matching

the desired output units of measurement, as an objective of the optimization. The inclusion

of additional objective functions such as correlation and complexity of the model was further

used to aid the GP process in reaching numerically and physically correct results. Moreover,

we also explored different optimization techniques, such as the principle of Cooperative Coevo-

lution and a multi-phase approach. Finally, the effect of a feature transformation prior to the

optimization was investigated. The results of our experiments indicate that the ability to solve

the benchmarks varies greatly with the usage of different optimization techniques. The greatest

benefits in terms of numerical results were observed first, when the correlation f2 was included

in the optimization and second, when features were precomputed and the function-set F was

reduced at the same time. Using these techniques, we observed a drastic increase in physi-

cally meaningful and numerically correct models produced by the GP. The usage of CC-based

approaches and the multi-phase approaches, on the other hand, were not as beneficial to the

overall outcomes. It must be noted however, that the CC-based algorithms in our experiments

were only configured with two subpopulations, and other aspects such as the divisions of the

terminal and function sets between the populations may require further investigation. In the

future, we plan to apply the developed methods to fluid-dynamics problems with higher dimen-

sionality – involving multiple spheres and varying Reynolds numbers – with the aim to provide

helpful tools for understanding the complex physics of particle-laden flows.
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Abstract. This paper overviews the capabilities of adjointOptimisationFoam, an OpenFOAM-
based framework for adjoint-assisted, gradient-based optimisation that first appeared publicly
in the open-source CFD toolbox, OpenFOAM, in v1906. Capabilities of the publicly available
software and of the in-house version of it are separately discussed. The publicly available soft-
ware is structured in a way that allows for an automated shape optimisation loop, including all
steps from the solution of the flow equations to the update of the design variables in a single ex-
ecutable, avoiding thus the need for external scripting. The software has already been used in a
number of industrial optimisation problems, some of which will briefly be presented herein. Ad-
ditionally, adjointOptimisationFoam is currently developed and extended by the Parallel CFD
& Optimization Unit of NTUA. Topics of active development include a) the continuous adjoint
to unsteady flows, including data compression techniques to reduce the memory footprint, b)
stabilisation techniques for the solution of the primal and adjoint equations based on the Re-
cursive Bisection Method and the control of the Adjoint Transposed Convection term, c) a suite
of tools for topology optimisation, with or without heat transfer, occasionally in the presence
of two fluids, and d) a number of adjoint-assisted methods for Uncertainty Quantification and
Robust Design Optimisation.
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1 INTRODUCTION

The open-source CFD toolbox, OpenFOAM1, is one of the largest open-source projects re-

lated to the solution of a number of computational problems pertaining to fluid mechanics,

with solvers tackling compressible and incompressible, single and multi-phase flows, chemi-

cal reactions, heat transfer, species transport etc. Due to its versatility and capability to tackle

a wide range of physical problems, it has attracted the attention of many industrial sectors,

among which the automotive, energy and turbomachinery ones as well as industries related to

combustion, plastics etc.

In the OpenFOAM release by OpenCFD, version v1906, OpenFOAM introduced a library

supporting adjoint-based shape optimisation, developed by the Parallel CFD & Optimisation

Unit of NTUA (PCOpt/NTUA) and contributed by the group of authors. This paper focuses

on highlighting the capabilities of this publicly available software, presenting some indicative

applications and discussing further developments that are currently being undertaken in-house.

The main executable making use of the adjoint-based infrastructure is called adjointOptimi-
sationFoam; this name will hereafter be used to refer to all adjoint-related OpenFOAM capa-

bilities, both publicly available and in-house developed at PCOpt/NTUA. adjointOptimisation-
Foam has been continuously developed and maintained with publicly available contributions

till v2012.

The publicly available software is structured in a way that allows for an automated shape

optimisation loop, without the need for external scripting, incorporating a) the adjoint to steady-

state incompressible flows, with full differentiation of the Spalart-Allmaras model with or with-

out wall functions, b) a number of differentiated objective functions, like forces, moments and

total pressure losses, c) a parameterisation scheme based on volumetric B-Splines that can also

act as a grid displacement tool, d) two major families of methods for computing shape sen-

sitivity derivatives based on either surface or field integrals and e) a number of methods for

updating the design variables, like the one from Broyden-Fletcher-Goldfarb-Shanno (BFGS)

and Sequential Quadratic Programming (SQP, used for constrained optimisation). The software

has already been used in a number of industrial optimisation problems, some of which will be

briefly presented herein.

At the same time, adjointOptimisationFoam is further developed and extended in-house by

PCOpt/NTUA. Topics of active development include a) the continuous adjoint to unsteady

flows, focusing on the usage of efficient compression algorithms to cut down on the sizable

storage requirements associated with unsteady adjoint, b) stabilisation techniques, mainly fo-

cusing on the Recursive Projection Method, to tackle convergence challenges associated with

small scale oscillations of the flow field in practical applications, c) a suite of tools for topology

optimisation, including Conjugate Heat Transfer (CHT) and multiple fluids, for the design of

heat exchangers and d) a number of adjoint-assisted methods for Uncertainty Quantification

(UQ) and Robust Design Optimisation (RDO), including first-and second-order variants of the

Method of Moments, an adjoint-assisted regression approach to the non-intrusive Polynomial

Chaos Expansion (PCE) and the adjoint to the intrusive PCE variant. Some relevant applications

features will be briefly presented herein.

2 THE ADJOINT METHOD IN BRIEF

The adjoint method is used to compute the sensitivity derivatives (SDs) δJ/δbi, where J is

the objective function of the optimisation problem (e.g. lift/drag forces, total pressure losses,

1www.openfoam.com
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etc) and bi, i ∈ [1, N ] the design variables, at a cost that does not scale with N . This allows for

handling optimisation problems with a very large number of design variables, occasionally in

the order of millions (see section 4.3).

The publicly available adjointOptimisationFoam solves the adjoint to incompressible, lami-

nar and turbulent flows. Assuming turbulence is modelled by the Spalart–Allmaras model, [1],

the flow (primal) equations read

Rp=−∂vj
∂xj

=0 (1a)

Rv
i =vj

∂vi
∂xj

− ∂τij
∂xj

+
∂p

∂xi

=0, i = 1, 2, 3 (1b)

Rν̃=vj
∂ν̃

∂xj

− ∂

∂xj

[(
ν+

ν̃

σ

)
∂ν̃

∂xj

]
− cb2

σ

(
∂ν̃

∂xj

)2

−ν̃ P (ν̃)+ν̃D(ν̃)=0 (1c)

where vi are the velocity components, p the static pressure divided by the constant density, ν

and νt the constant bulk and turbulent viscosity, respectively, τij=(ν+νt)
(
∂vi
∂xj

+
∂vj
∂xi

)
the stress

tensor components, ν̃ is the turbulence model variable and Δ is the distance from the wall.

Details about the terms and constants of eq. 1c can be found in [1]. To account for the distance

variation with respect to (w.r.t) the design variables during the adjoint formulation for shape

optimisation problems, [2], the Hamilton-Jacobi PDE is used for computing Δ

RΔ=
∂

∂xj

(
∂Δ

∂xj

Δ

)
−Δ

∂2Δ

∂x2
j

− 1=0 (2)

In industrial cases, the use of the law-of-the-wall (wall functions) is a common practice in order

to avoid extremely stretched grids close to the solid walls and lower the computational cost.

Working with a cell–centered finite volume discretisation scheme, Spalding’s law is used to

compute the friction velocity based on the velocity magnitude at the first cell-centre off the wall

[3].

As already mentioned, the adjoint equations are formulated in a way that makes the final

SD expression free of variations of the flow variables w.r.t. the design ones. To this end, an

augmented objective function L is formed by adding the field integrals of the products of the

flow PDEs and the adjoint variable fields to the objective function J , i.e.

L=J+

∫
Ω

uiR
v
i dΩ+

∫
Ω

qRpdΩ+

∫
Ω

ν̃aR
ν̃dΩ+

∫
Ω

ΔaR
ΔdΩ (3)

where Ω is the computational domain, ui the adjoint velocity components, q the adjoint pressure,

ν̃a the adjoint turbulence variable and Δa the adjoint distance. Given that, upon convergence,

the residuals of the primal equations are zero, L≡J .

After differentiating eq. 3 w.r.t. bn and developing it using the Gauss divergence theorem, the

adjoint PDEs result by setting the multipliers of the derivatives of the flow variables w.r.t. bn to
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zero, [2], and read

Rq=−∂uj

∂xj

= 0 (4a)

Ru
i =uj
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∂xi

− ∂(vjui)
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−
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+
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(
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(4b)
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+(−P+D) ν̃a=0 (4c)

RΔa =−2
∂

∂xj

(
Δa

∂Δ

∂xj

)
+ν̃ν̃aCΔ=0 (4d)

where τaij = (ν+νt)
(

∂ui

∂xj
+

∂uj

∂xi

)
are the adjoint stress tensor components. The Cν̃ , CY and CΔ

expressions can be found in [4, 5].

The adjoint boundary conditions are defined after zeroing the multipliers of the derivatives

of the flow variables w.r.t. bn in the boundary surface integrals emerging after differentiating

eq. 3 and applying the Gauss divergence theorem. The detailed presentation of the adjoint

boundary conditions can be found in [2], including the adjoint law of the wall for cases using

wall functions.

The final SD expression depends on the design variables bn (see, for instance, [6] for shape

and [7] for topology optimisation). It is important to note that the eqs. 4a to 4c do not depend

on bn and can, thus, be used with any design variable, supporting for instance shape [2], flow

control [8], topology optimisation [7] (after minor additions), etc.

The publicly available version of adjointOptimisationFoam includes the adjoint to the Spalart–

Allmaras turbulence model and with or without wall functions, [4, 2]. The adjoint to a number

of other turbulence models has also been developed in-house and can be found in [9, 8] for

high- and low-Re variants of the k − ε turbulence model and in [10] for the k − ω SST one.

3 SHAPE OPTIMISATION

3.1 Publicly Available Functionality

In shape optimisation, the publicly available adjointOptimisationFoam can be used to com-

pute only sensitivity maps or perform shape optimisation loops.

Sensitivity maps, like the one presented in fig. 1, are plots of the derivatives of the objective

function w.r.t. the normal displacement of boundary wall nodes and may become a very useful

tool for designers, since they offer insight into areas with great aero/hydrodynamic optimisation

potential and mark the direction of favorable surface displacement. Hence, at the cost of a

single flow and adjoint solution, the designer can obtain useful information about favorable

shape deformations without even running an optimisation loop.

To create an automated shape optimisation loop, apart from solving the flow and adjoint

equations, a number of additional steps need to be performed within each cycle, fig. 2. ad-
jointOptimisationFoam incorporates all these steps within a single executable, without external

scripts for managing the optimisation process.

Regarding parameterisation (which, among other, determines the design variables control-

ling the aero/hydrodynamic shape), adjointOptimisationFoam makes use of volumetric (i.e. trivari-
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Figure 1: Drag sensitivity map computed on the surface of the DrivAer car model. Blue/red

areas should be displaced inwards/outwards to reduce drag. All other areas have a negligible

effect on drag.

ate) B-Splines; this is based on structured grids of control points, the coordinates of which act

as the design variables, fig. 3. More details about the mathematical background of the parame-

terisation tool can be found in [11].

Regarding the available objective functions, adjointOptimisationFoam can handle forces,

moments, total pressure losses and a surrogate objective for noise minimisation, see [11].

Sensitivity derivatives for shape optimisation can be computed using two families of meth-

ods, based on either surface or field integrals, namely the (E-)SI and FI adjoints developed in

[6]. The E-SI approach includes also the adjoint to the grid displacement model, taking into

consideration the effect of the so-called grid sensitivities.

The design variables can be updated using a number of methods, including among other the

conjugate gradient and (L)BFGS, [12], ones for unconstrained optimisation problems as well

as Rosen’s projection method, [13], and SQP, [12], for optimisation problems including con-

straints. All the above-mentioned objective functions can also act as constraints (for instance,

by setting target or threshold values for them). Additionally, some geometric constraints, like

the area/volume of an aerodynamic shape, can also be imposed.

Finally, all grid displacement methods already available in OpenFOAM can be used to adapt

the internal mesh points to the new boundary designed by the optimisation loop. Experience

with a number of industrial optimisation problems has shown that the volumetric B-Splines

used to parameterise surfaces can also act as a robust grid displacement method and are, hence,

usually preferred to other methods.

An indicative application of adjointOptimisationFoam, studied in [5], deals with the multi-

point, multi-objective optimisation of the “FP01” concept car designed by the Toyota aerody-

namics department, depicted in fig. 3. To investigate the trade-off between drag and side-wind

sensitivity, a two operating point design problem is defined and solved. The two operating points

correspond to two flow directions (0o and 30o side-wind); each case is associated with its own

objective function. The two functions being minimised are the drag coefficient at 0o and the yaw

moment coefficient at 30o side-wind. The parameterisation of the spoiler and diffuser regions

with volumetric B-Splines boxes is depicted in fig. 3. The Pareto front of non-dominated solu-

tions, computed by combining the two objective functions with different weight value-sets and

optimising anew, is presented in fig. 4, along with the optimised car geometries corresponding

to a number of Pareto front members. The optimisation was based on the (steady-state) RANS

equations for the CPU cost to be affordable. However, some of the optimised geometries were
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Figure 2: Flowchart of a typical shape optimisation loop. U stands for the primal variables

(unknowns in eqs. 1b and 1c). Ψ are the adjoint variable fields, i.e. solutions to eqs. 4.

Figure 3: Two morphing boxes parameterising the spoiler and diffuser areas of a concept car.

Case studied in [5]. The location of the morphing boxes has been found after computing sensi-

tivity maps for the two objectives.

re-evaluated using DDES, [5]; it was observed that even though the quantitative reduction of

the objective functions was different for the RANS- and DDES-based evaluations, the geome-

tries designed using the RANS equations were indeed better than the baseline car even when

re-evaluated with DDES.
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Figure 4: Shape optimisation of the FP01 concept car: Top: Front of non–dominated solutions

(filled, red squares) and convergence paths of the optimisation runs carried out using different

sets of weights for the drag coefficient (plotted in the abscissa) and the yaw moment coefficient

(shown in the ordinate). All values have been normalised w.r.t. the baseline geometry. Mid

and bottom: optimised geometries (port side) compared to the baseline car (starboard side),

corresponding to four Pareto front members. Case studied in [5].
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3.2 In-house shape optimisation developments

The publicly available shape optimisation infrastructure is enriched in-house with a number

of additional objectives and parameterisation schemes/design variables. Indicatively, shape op-

timisation can be performed using the displacement of all wall nodes as the design variables. To

ensure the surface smoothness while using such a high number of design variables, the boundary

displacement is smoothed using a Helmholtz-type PDE, as in [14].

An indicative application pertaining to the optimisation of a Kaplan-type turbine runner is

presented in fig. 5. The objective function is to minimise the area of the runner surface with a

pressure below a certain threshold, to avoid cavitation. Since, in gradient-based optimisation,

objective functions must be differentiable, the minimum of the pressure field is replaced by a

differentiable sigmoid function, as in [15]. As seen from fig. 5, the cavitation-prone areas have

practically disappeared after 40 cycles.

The in-house functionality of adjointOptimisationFoam has also been extended to include

the adjoint method supporting CHT shape optimisation, see [16].

4 ADDITIONAL FEATURES - EXTENSIONS

adjointOptimisationFoam is actively being developed at PCOP/NTUA, extending the pub-

licly available features and adding new ones. In this section, some of these features are briefly

discussed and indicative applications are showcased.

4.1 Compression methods for unsteady adjoint simulations

In gradient-based optimisation with unsteady flows, the adjoint equations must be integrated

backwards in time; this requires the instantaneous flow fields to be available at each time-step of

the adjoint solver. Storing the entire flow history is usually infeasible for practical applications

due to the immense memory requirements. The latter can be alleviated using the so-called

check-pointing approach, [17], which stores a number of flow solutions (the check-points) along

the simulation time span; then, the flow solution at any time-step other than a check-point is

retrieved by integrating the flow equations starting from the nearest check-point, while re-using

check-points that become idle. Though check-pointing can reduce storage requirements, the

additional CPU cost for recomputing intermediate flow fields might not be negligible at all.

Lately, a compressed full storage strategy for unsteady adjoint-based optimisation problems

has been implemented and proved to exhibit great benefits compared to the memory require-

ments of a (uncompressed) full storage, by avoiding at the same time the flow recomputations

of check-pointing and maintaining the SD accuracy. The compression of the computed flow

fields at each time-step is performed using a combination of the ZFP lossy compression al-

gorithm, [18], and an incremental variant of Proper Generalised Decomposition (iPGD) [19].

Initial results show that an efficient combination of the two approaches can lead to a compres-

sion ratio of the order of 100-1000, [20], allowing the compressed full storage of the flow fields

and avoiding, thus, the use of check-pointing and the associated extra CPU cost.

Indicatively, fig. 6 presents an adjoint-based optimisation of the fairing of the motorbike

tutorial of OpenFOAM, based on the URANS equations. The objective to be minimised is

the time-averaged drag exerted on the whole motorbike, fig. 6. The solver runs with Δt =
2.5·10−4sec for a total time of 7sec on a grid of ∼1.1·106 cells. The optimisation is performed

on two computational nodes with 128 GB memory each. A reduction in the memory footprint

by a factor of 480 was achieved, with a negligible error in the computed sensitivities, fig. 7.
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Figure 5: Kaplan-type turbine runner: optimisation targeting suppression of cavitation. Top:

pressure distribution over the initial (left) and optimised (right) geometries, as seen from the

outlet of the runner/suction side of the runner blades. The runner areas with a pressure below

the defined threshold are contained within the black lines (areas close to the leading edge of

the suction side and the trailing edge of the pressure side). The cavitation-prone areas have

practically disappeared in the optimised geometry. Bottom: cumulative normal displacement

of the optimised blade, plotted over the suction (left) and pressure (right) sides. Red areas have

been displaced “inwards” while blue areas have moved in the opposite direction. It is interesting

to note that even the pressure side has been slightly displaced in an attempt to eliminate the

cavitation-prone area close to the trailing edge. The geometry is a courtesy of Andritz Hydro.
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Figure 6: Case 4. Initial (left) and optimised (right) shape of the motorbike’s fairing.
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Figure 7: Motorbike optimisation using unsteady adjoint: Left: CPU cost, compression ratio

(CR) and error in SDs (ε) at the first optimisation cycle, using a combination of ZFP and iPGD

(abbreviated as iPGDZ) to compress the entire flow field series, compared with check-pointing.

Right: evolution of the normalised mean drag coefficient during the course of the optimisation.

JD is reduced by 6.7%. By using iPGDZ, the memory footprint can be divided by a factor of

480 (from ∼ 2TB for the uncompressed full storage to 4.3GB for the iPGDZ-compressed full

storage) with a negligible error in SDs (less than 0.6%). Additionally, the computational cost

is reduced by ∼ 30% (from ∼ 51h to ∼ 36h) compared to that of a binomial check-pointing

approach which stores approximately 10% of the total number of flow fields.

4.2 Stabilisation of the adjoint equations

Despite the great cost benefits that can be achieved using the compressed full-storage strat-

egy presented in section 4.1, optimisation using unsteady flow solvers can be quite expensive

due to the high cost of each transient flow solution. In many industrial cases, steady-state

solvers are used even in the presence of mild, occasionally a bit stronger, flow unsteadiness in

an attempt to reduce the CPU cost of CFD evaluations and optimisations. However, the use

of steady-state solvers in cases with mild unsteadiness (or, even, cases with vortex shedding),

often encountered in flows past bluff bodies, usually leads to significant convergence difficul-

ties for both the primal and adjoint solvers. The use of a steady flow solver does not allow

convergence of the flow equations, and the adjoint solution may be led to stalling or divergence

[21, 22]. For the stabilisation of iterative procedures, the Recursive Projection Method (RPM),

[23], has been implemented within adjointOptimisationFoam to deal with the aforementioned

convergence difficulties, [20]. The RPM splits the solution space into two subspaces, contain-

ing the unstable and stable modes of the Jacobian matrix of the iterative scheme, where the

one is the orthogonal complement of the other. It, then, performs an additional Newton step

within the unstable subspace while retaining the original iterative scheme on its complement.

An indicative application of the RPM for the stabilisation of the adjoint equations in a problem

where vortex-shedding is predicted by a steady-state solver in fig. 8.
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Figure 8: Shape optimisation of a cylinder with a Re = 140, targeting min. drag under the

constraint of maintaining the cylinder area. Despite the high Re number and the presence of

vortex-shedding in the initial geometry, a steady-state solver is used for the solution of the

primal and adjoint equations. Top: Residuals of the primal (left) and adjoint (right) pressure

equations. Blue/red colors correspond to solutions with/without the RPM. In both cases plotted

on the right, the adjoint equations were solved after having stabilised the primal equations by

means of the RPM. The RPM manages to stabilise the solution of both the primal and the adjoint

equations. Bottom: streamlines of the flow velocity, colored by the velocity magnitude, plotted

around the initial and optimised geometries. Using the RPM, the optimisation converged to a

geometry in which vortex-shedding has been suppressed, justifying the use of a steady-state

solver.

4.3 Topology optimisation

Topology Optimisation (TopO) is nowadays a popular method for the preliminary design of

industrial duct systems with multiple inlets and outlets [24]. Though a number of variants ex-

ist for formulating the TopO problem, such as the density- (or porosity) based approach [25]

or level-set methods, they all follow the idea of artificially blocking part of an initial flow do-

main to penalize its counter-productive areas, in an attempt to minimize J . This blockage (or

porosity) field acts as the field of the design variables in TopO problems. Usually, one design

variable exists per grid cell, formulating optimisation problems with thousands or millions of

design variables. This particular feature of TopO makes the utilisation of adjoint methods for

computing δJ/δbn the only computationally feasible approach.

PCOpt/NTUA has recently incorporated a number of best practices related to porosity-based

TopO, such as the regularisation and projection of the porosity field to mitigate the effects of

a grid-dependent solution and alleviate the checkerboard effect [26], to the in-house version of

adjointOptimisationFoam, [7]. Additionally, a number of peripheral tools supporting TopO, like

the Method of Moving Asymptotes (MMA, [27]) used to update the design variables variables

in TopO problems with inequality and bound constraints, have also been implemented. Finally,

the adjoint to Conjugate Heat Transfer (CHT) problems, with one or more working fluids, has
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been implemented in adjointOptimisationFoam for tackling the optimisation/design of heat ex-

changers. An indicative application of TopO for CHT problems, initially presented in [7], is

showcased in fig. 9.

4.4 Adjoint methods for uncertainty quantification and robust design optimisation

Most of the optimisation applications assume fixed boundary conditions and do not consider

manufacturing imperfections. However, this is not the case in real life and industrial problems.

For instance, operating conditions may vary within a certain range, creating an uncertain envi-

ronment. If these variations are not taken into account, it is likely that the designed/optimised

geometries will perform efficiently solely at a single operating point [28]. Hence, there is a

need to develop alternative optimisation methods that account for uncertainties [29], a.k.a. ro-

bust design optimisation (RDO) methods. In order to measure the impact of uncertainties on the

performance of an aero/hydrodynamic shape, statistical moments (usually the mean value and

variance) of the Quantity of Interest (QoI, the objective function in optimisation problems with-

out uncertainties) have to first be quantified. The process of computing these statistical moments

is referred to as Uncertainty Quantification (UQ). In an RDO problem, a weighted combination

of the statistical moments of the QoI is minimised. A recent review of UQ methods and their

application in the RDO of air vehicles can be found in [30].

Here, we will focus on how adjoint methods, programmed within adjointOptimisationFoam,

can reduce the cost of some UQ approaches and/or drive the RDO loop. Non-intrusive Polyno-

mial Chaos Expansion (niPCE) [31, 32] is a popular UQ method that approximates the QoI as

a function of weighted polynomials of the uncertain variables. The weights of the polynomials

can be computed using either Gauss Quadrature rules or a regression approach, [33]. Adjoint

methods within adjointOptimisationFoam have been used to either compute the gradient of the

RDO objective function evaluated using the former approach, to drive the RDO loop, or provide

entries for the regression system of the latter approach at the cost of a single adjoint solution,

[34], reducing its UQ cost by a factor of M , where M is the number of the uncertain variables.

Additionally, an intrusive PCE (iPCE) variant for incompressible flows and its adjoint counter-

part have also been implemented within adjointOptimisationFoam, [35], further reducing the

cost of RDO for this particular type of problems.

Another UQ method that heavily utilises adjoint is the Method of Moments (MoM) [36, 37].

According to the MoM, the QoI is expanded into a Taylor series in terms of the uncertain

variables. By keeping only the first-order term in the Taylor expansion and computing the

first two statistical moments of the QoI, namely its mean and standard deviation, a First-Order

Second-Moment (FOSM) UQ method is formulated. Since the FOSM-based RDO objective

already includes first-order derivatives w.r.t. the uncertain variables, second-order mixed ones

(w.r.t. both design and uncertain variables) are needed to compute the gradient driving the RDO.

All first-order gradients, w.r.t. either the design or the uncertain variables, are computed based

on the continuous adjoint method presented in section 2. To avoid the computation of the

second-order mixed derivatives, with a cost that scales with the min. of M and N , its projection

to a certain vector is computed at a CPU cost of 2 Equivalent Flow Solutions, formulating the

only RDO approach known to the authors with a cost that is independent from both M and N .

The latter stands for the projected FOSM (pFOSM) method proposed by the group of authors,

[38], and implemented within adjointOptimisationFoam. Hessian computations used to support

the Second-Order Second-Moment (SOSM) variant of the MoM have also been implemented

within adjointOptimisationFoam and are discussed in [34].
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Figure 9: CHT optimisation of a micro-channel. The bottom and side walls of the channel

have a temperature of 373K while the flow enters the domain from the left with 273K and a

Re = 166. The walls adjacent to the inlet and outlet are adiabatic and the top boundary has

symmetry conditions. Weighted combinations of total pressure losses (Jpt) and the temperature

difference between the outlet and the inlet (JQ) of the domain are formulated and minimised,

using different weight value-sets. The fluid and solid distributions (blue and red areas, respec-

tively) obtained for the (1,0), (0.5,0.5) and (0.1,0.9) weight-value sets of Jpt and JQ, along with

the corresponding temperature fields are shown in the top three rows. Increasing the weight of

JQ computes ducts which are approaching the heated bottom wall and even create some fin-like

structures to increase heat transfer. The front of non-dominated solutions obtained for the vari-

ous weight value sets is plotted (bottom). All objective values have been normalised with those

corresponding to a completely fluidised domain. Case studied in [7].

Acknowledgments

This project has received funding from the Hellenic Foundation for Research and Innovation

(HFRI) and the General Secretariat for Research and Technology (GSRT), under grant agree-

203



E. Papoutsis-Kiachagias, K. Gkaragkounis, A.-S. Margetis, T. Skamagkis, V. Asouti and K. Giannakoglou

ment No 603, for the development of UQ and RDO methods.

REFERENCES

[1] P. Spalart and S. Allmaras. A one-equation turbulence model for aerodynamic flows. In

AIAA Paper 1992-0439, 30th Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 6-9

January 1992.

[2] E.M. Papoutsis-Kiachagias and K.C. Giannakoglou. Continuous adjoint methods for tur-

bulent flows, applied to shape and topology optimization: Industrial applications. Archives
of Computational Methods in Engineering, 23(2):255–299, 2016.

[3] NT. Frink. Assessment of an unstructured-grid method for predicting 3-D turbulent vis-

cous flows. In AIAA Paper 1996-0292, 34th Aerospace Sciences Meeting and Exhibit,
Reno, Nevada, 15-18 January 1996.

[4] A.S. Zymaris, D.I. Papadimitriou, K.C. Giannakoglou, and C. Othmer. Continuous adjoint

approach to the Spalart-Allmaras turbulence model for incompressible flows. Computers
& Fluids, 38(8):1528–1538, 2009.

[5] E.M. Papoutsis-Kiachagias, V.G. Asouti, K.C. Giannakoglou, K. Gkagkas, S. Shimokawa,

and E. Itakura. Multi-point aerodynamic shape optimization of cars based on continuous

adjoint. Structural and Multidisciplinary Optimization, 59(2):675–694, 2019.

[6] I.S. Kavvadias, E.M. Papoutsis-Kiachagias, and K.C. Giannakoglou. On the proper treat-

ment of grid sensitivities in continuous adjoint methods for shape optimization. Journal
of Computational Physics, 301:1–18, 2015.

[7] E.M. Papoutsis-Kiachagias and K.C. Giannakoglou. An adjoint-based topology optimiza-

tion framework for fluid mechanics and conjugate heat transfer in OpenFOAM. In 8th
OpenFOAM Conference, Digital Event, October 13-15 2020.

[8] E.M. Papoutsis-Kiachagias, A.S. Zymaris, I.S. Kavvadias, D.I. Papadimitriou, and K.C.

Giannakoglou. The continuous adjoint approach to the k–ε turbulence model for shape

optimization and optimal active control of turbulent flows. Engineering Optimization,

47(3):370–389, 2015.

[9] A.S. Zymaris, D.I. Papadimitriou, K.C. Giannakoglou, and C. Othmer. Adjoint wall func-

tions: A new concept for use in aerodynamic shape optimization. Journal of Computa-
tional Physics, 229(13):5228–5245, 2010.

[10] I.S. Kavvadias, E.M. Papoutsis-Kiachagias, G. Dimitrakopoulos, and K.C. Giannakoglou.

The continuous adjoint approach to the k–ω SST turbulence model with applications in

shape optimization. Engineering Optimization, 47(11):1523–1542, 2015.

[11] E.M. Papoutsis-Kiachagias, N. Magoulas, J. Mueller, C. Othmer, and K.C. Giannakoglou.

Noise reduction in car aerodynamics using a surrogate objective function and the continu-

ous adjoint method with wall functions. Computers & Fluids, 122:223–232, 2015.

[12] J. Nocedal and S.J. Wright. Numerical Optimization. Springer, New York, 1999.

204



E. Papoutsis-Kiachagias, K. Gkaragkounis, A.-S. Margetis, T. Skamagkis, V. Asouti and K. Giannakoglou

[13] JB. Rosen. The gradient projection method for nonlinear programming. Part I. Linear

constraints. Journal of the Society for Industrial and Applied Mathematics, 8(1):181–217,

1960.

[14] A. Jameson and J. Vassberg. Studies of alternate numerical optimization methods applied

to the brachistochrone problem. In OptiCON ’99 Conference, Newport Beach, CA, USA,

14–15 October 1999.

[15] E.M. Papoutsis-Kiachagias, S.A. Kyriacou, and K.C. Giannakoglou. The continuous ad-

joint method for the design of hydraulic turbomachines. Computer Methods in Applied
Mechanics and Engineering, 278:612–639, 2014.

[16] K.T. Gkaragkounis, E.M. Papoutsis-Kiachagias, and K.C. Giannakoglou. The continuous

adjoint method for shape optimization in conjugate heat transfer problems with turbulent

incompressible flows. Applied Thermal Engineering, 140:351–362, 2018.

[17] A. Griewank and A. Walther. Algorithm 799: Revolve: an implementation of

checkpointing for the reverse or adjoint mode of computational differentiation. ACM
Transactions on Mathematical Software (TOMS), 26(1):19–45, 2000.

[18] P. Lindstrom. Fixed-Rate Compressed Floating-Point Arrays. IEEE Transactions on Vi-
sualization and Computer Graphics, 20(12):2674–2683, 2014.

[19] F. Chinesta, R. Keunings, and A. Leygue. The proper generalized decomposition for
advanced numerical simulations: A primer. Springer, 2014.

[20] T. Skamagkis, A.-S.I Margetis, E.M. Papoutsis-Kiachagias, and K.C. Giannakoglou. On

the efficiency and robustness of the adjoint method: Applications in steady and unsteady

shape optimization in fluid mechanics. In 8th OpenFOAM Conference, Digital Event,

October 13-15 2020.

[21] R. Dwight and D. Vollmer. Efficient algorithms for solution of the adjoint compressible

navier-stokes equations with applications. In Proceedings of the ONERA-DLR Aerospace
Symposium (ODAS), Toulouse, France, 2006. Proceedings of the ONERA-DLR Aerospace

Symposium (ODAS).

[22] T. Albring, T. Dick, and N. Gauger. Assessment of the Recursive Projection Method for the

stabilization of discrete adjoint solvers. In 18th AIAA/ISSMO Multidisciplinary Analysis
and Optimization Conference, Denver, Colorado, 2017. 18th AIAA/ISSMO Multidisci-

plinary Analysis and Optimization Conference.

[23] G.M. Shroff and H. Keller. Stabilization of unstable procedures: The Recursive Projection

Method. SIAM Journal of Numerical Analysis, 30(4):1099–1120, 1993.

[24] C. Othmer. Adjoint methods for car aerodynamics. Journal of Mathematics in Industry,

4(6), 2014.

[25] C.B. Dilgen, S.B. Dilgen, D.R. Fuhrman, O. Sigmund, and B.S. Lazarov. Topology opti-

mization of turbulent flows. Computer Methods in Applied Mechanics and Engineering,

331:363 – 393, 2018.

205



E. Papoutsis-Kiachagias, K. Gkaragkounis, A.-S. Margetis, T. Skamagkis, V. Asouti and K. Giannakoglou

[26] B.S. Lazarov and O. Sigmund. Filters in topology optimization based on Helmholtz-

type differential equations. International Journal for Numerical Methods in Engineering,

86(6):765–781, 2011.

[27] K. Svanberg. The method of moving asymptotes – a new method for structural optimiza-

tion. International Journal for Numerical Methods in Engineering, 24(2):359–373, 1987.

[28] G.K. Kenway and J.R.R. Martins. Aerodynamic shape optimization of the CRM configu-

ration including buffet-onset conditions. In 54th AIAA Aerospace Sciences Meeting, San

Diego, California, USA, January 2016.
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COMPUTATIONAL DESIGN OF COMPARATIVE MODELS AND 
GEOMETRICALLY CONSTRAINED OPTIMIZATION OF A MULTI-
DOMAIN VARIABLE SECTION BEAM BASED ON TIMOSHENKO 

MODEL

Laura Sardone , Marco M. Rosso , Raffaele Cucuzza , Rita Greco , and Giuseppe C. 
Marano

Abstract

This paper presents an efficient strategy to minimize the volume of a large span multi-domain 
variable section beam considering the geometric shape parameters as mathematical con-
straints. The shape optimization of the beam element has been conducted through an imposed 
geometry to find the best shape between the design-decision making and the structural effi-
ciency. The study, based on the kinematic hypothesis of Timoshenko, focuses on a test case 
retrieved from the project designed by P. M. da Rocha and the engineer S. Mitsutani developed 
for the Japan World Exposition, Osaka, 1970 (Osaka's Expo '70).  
The structural component has been remodeled and optimized through different approaches that 
generate comparative numerical models joining the combinations of Computational Design 
and Algorithm-Aided Design. Even though very abundant knowledge and literature on struc-
tural optimization already exists, this study aims not only to study the certain structural element 
undergone to a specific emptying function but to compute and chart the results to be used for 
empirical purposes. The results of the study show, in the search of the architectural optimal 
solutions, advantages regarding the performance of the structures and the control of the shape 
of the architectural component giving - at the same time - the possibility to join the needs of 
architectural narratives with the stability and efficiency of an optimized and correctly designed 
structure. 

Keywords:
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1 INTRODUCTION

1.1 Merging computational design with architectural needs: the case study
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1 Brazilian Pavilion, Japan World Exposition, Osaka, 1970
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2 Exploded view of the Brazilian Pavilion at the Osaka Expo, 1970. In red: main beams with variable 
cross-section.
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2 COMPUTATIONAL GEOMETRY AND ANALYTICAL MODEL OF THE 
VARIABLE SECTION BEAM

3 Geometry of the main beam with non-constant section and reference axes
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4 Computational Geometry of a portion the test case: definition of the problem
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5 Multi-domain subdivision related to the case study problem.
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2.1 The Optimization Problem 
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3 NUMERICAL DEVELOPMENT THROUGH VISUAL PROGRAMMING
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6 Portion of the roof considered for the load implementation.
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7 Application of boundary conditions; sections related to the Table 2.
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4 NUMERICAL DEVELOPMENT AND OPTIMIZATION COMPARISON WITH 
MATLAB IMPLEMENTATION
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5 NUMERICAL RESULTS AND DISCUSSION

5.1 Gh-Octopus Results

8 Pareto-Optimal Front in Gh-Octopus
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9 Solution developed by Octopus Solver summarized in Table 3. 
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10 Shape Comparison between the main beam of Brazil's Pavilion (Expo Osaka, 1970) and the beam sub-
jected to the Optimization process.

5.2 Matlab-ga results

11 Matlab-ga shape result and graphs

5.3 Results Discussion
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Abstract. It is common in practice, an optimal solution of a decision-maker to depend heavily
on the response of another decision-maker, formulating a bilevel optimization problem. The op-
timization of a bilevel problem aims to achieve the optimum solution of the upper-level, taking
into consideration the optimal lower-level values too. When the lower-level problem is multi-
modal, meaning that it has several global optima, an ambiguity about the optimal upper-level
solution appears. The optimistic approach assumes that the follower will respond with an op-
timal solution, that is favorable by the upper-level as well. In the pessimistic approach, the
upper-level is optimising for the worst case. Various evolutionary algorithms have been imple-
mented successfully to solve the optimistic approach of the bilevel problem. To the best of our
knowledge, these algorithms have not been extended to the pessimistic approach. In this paper,
we use a multi-population nested Differential Evolution to solve the pessimistic bilevel problem
when the lower-level has multiple global optima. The performance of the algorithm is examined
by solving a test-problem taken from the literature.
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1 INTRODUCTION

The bilevel optimization problem is an optimization problem, operating as the upper-level,

that has another optimization problem as a constraint, at the lower-level. Bilevel problems

present many difficulties in its mathematical formulation, as they typically do not obey simplis-

tic properties such as convexity or continuity. Moreover, it is proven that even the simple case

of a linear bilevel optimization problem is NP-hard [1]. The bilevel optimization problem can

be also interpreted as a non-cooperative static Stackelberg game, as firstly introduced by von

Stackelberg in 1934 in the context of unbalanced economic markets [2].

When the lower-level problem is multimodal, meaning that it has several global optima, an

ambiguity about he optimal upper-level solution appears. The community has identified two

approaches to tackle this uncertainty, the optimistic and the pessimistic approach [3]. When

adopting an optimistic stance, the upper-level assumes that the lower-level will select the most

optimal solution that is also optimal for it. In the pessimistic approach, the upper-level is opti-

mising her objective making the worst-case assumptions about the decision of the lower-level.

The methods of solving the bilevel optimization problem can be divided into two main cate-

gories [3]. The first one refers to classical approaches, based on mathematical derivation meth-

ods, such as branch and bound [1], and is usually applied to well-behaved bilevel problems with

specific properties. The second one is based on hybrid and evolutionary approaches, which have

become more popular in the last years. Metaheuristic and evolutionary algorithms, in general,

do not need to make any assumptions about the objective functions of the problem and can

be applied to general bilevel problems [3]. Examples of this kind of Bilevel Evolutionary Al-

gorithms (BLEAs) are BlDE with Differential Evolution (DE) in both levels[4], NBLEA with

Genetic Algorithm in both levels[5], a memetic approach in [6], BLEAQ with genetic algorithm

and quadratic approximations [7], BL-CMA-ES with CMA-ES in both levels [8], etc. However,

all these evolutionary algorithms are adopting the optimistic approach for solving the BOP, as

it is easier to track.

While indeed the solution of the optimistic approach is much more tractable, it comes with

a drawback: the assumptions in the model, that a cooperation of the lower- with the upper-level

exists without any reward considered in her objective, are not realistic. On the contrary, the

pessimistic approach, while more conservative, can be interpreted as a bound and minimize

the risk of the worst case and give more robust solutions. Therefore, finding solutions for

the pessimistic case is of great importance in practice, when optimizing under uncertainty and

especially under worst-case scenario optimization.

The pessimistic approach is generally considered much more difficult to solve, and the solu-

tion methodologies made for the optimistic approach are not directly applicable to it. A survey

about the pessimistic bilevel optimization problem and its optimality conditions can be found

in [9, 10, 11]. There are several studies in the classical category, proposing solution methods

for pessimistic bilevel problems with specific mathematical properties, for example for the pes-

simistic bilevel linear problem [12], or a reduction method for the pessimistic quadratic-linear

bilevel[13]. From the hybrid and evolutionary approaches, the semivectorial pessimistic bilevel

problem has been approached with PSO [14] and Differential Evolution [15], with a multi-

objective problem in the lower-level. To the best of our knowledge, there is no Evolutionary

Algorithm studied to solve the general pessimistic bilevel optimization problem.

In this study, we aim to solve the pessimistic BOP by adopting EAs at both levels. The

algorithm has a nested structure. Therefore, for solving each upper-level candidate solution,

a lower-level optimization is conducted. The lower-level optimization algorithm has a multi-
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population schema, that can be evaluated in parallel mode to decrease the computational cost.

For each upper-level sample point, this generates a number of lower-level solutions-one for

each population-, that are further evaluated according to the upper-level fitness function. From

these solutions, the ones giving the minimum and maximum upper-level value (optimistic and

pessimistic) are then passed to the upper-level. In the upper-level, a 2-ranking system is applied,

where the best optimistic and pessimistic solutions are co-evolving. To further improve the

accuracy and efficacy of the algorithm, a local search is conducted for every best solution found.

The algorithm gives two final best solutions, one for the optimistic and one for the pessimistic

approach. To test the method, the algorithm is tested on benchmark test-functions with known

global optima.

The rest of the paper is organized as follows. Firstly, the optimistic and pessimistic problem

are defined in Section 2. In Section 3 the proposed method and the steps of the algorithm are

explained. In section 4 the experimental setup is reported along with the test function used and

the relevant results. Finally, in Section 5 we conclude the paper and give some future steps of

the research.

2 DEFINITIONS OF THE BILEVEL OPTIMIZATION PROBLEM

The bilevel optimization problem consists of two levels of optimization tasks, where two

different sets of variables belong to each of these tasks. The mathematical representation is as

follows :
min
x

F (x, y)

s.t. Gk(x, y) ≤ 0, y ∈ Ψ(x)
(1)

where Ψ(x) is the set of solutions of the following lower-level problem:

min
y

f(x, y)

s.t. g(x, y) ≤ 0
(2)

where y is the solution of the lower-level problem from the set of solutions y ⊆ Rm, with

regard to solution from upper-level, x from set of solutions x ⊆ Rn,where F represents upper-

level’ s objective function, while f represents the lower-level’ s objective function. When more

than one lower-level optimal solutions for all or some upper-level variables exist, the bilevel

problem becomes ill-defined. To tackle this, the community is employing two approaches. In

the optimistic approach, the upper-level is optimising expecting that the lower-level reaction

will be optimal for her as well. In the pessimistic case, the upper-level is optimising under the

worst-case scenario of the lower-level reaction. The general pessimistic bilevel problem can be

formulated as follows:
min
x∈X

max
y∈Ψ(x)

F (x, y)

s.t. G(x, y) ≤ 0
(3)

where X := x : G(x) ≤ 0, and Ψ(x) is the set of solutions opf the lower-level problem

min y f(x, y)

s.t. g(x, y) ≤ 0
(4)

Here x ∈ Rn and y ∈ Rm. More about the definitions of both the approaches can be found in

[16, 3].

226



Margarita Antoniou and Gregor Papa

3 PROPOSED METHOD: P-BLDE

The proposed method is an implementation of a Bilevel Differential Evolution algorithm

with multi-population and aims to provide both the optimistic and pessimistic solutions of the

bilevel problem. Therefore we call this algorithm Pessimistic Bilevel Differential Evolution

(P-BLDE).

In the nested algorithm, for each upper-level individual, a lower-level optimization procedure

is conducted. A flowchart of the upper- level and lower-level P-BLDE is presented in the Fig-

ures 1 and 2. A co-evolutionary DE is implemented for the upper-level optimization problem,

and with the upper-level variables fixed for the population of optimistic and pessimistic individ-

uals, a lower-level optimization DE is conducted, passes its optimistic and pessimistic optimal

values to the upper-level, and then the sample points are evaluated. The constraint handling for

both levels is done by ranking the individuals with the less violation as the best. More precisely,

the steps of the algorithm are the following:

Figure 1: upper-level DE flowchart.

For the upper-level DE:

Step 1: Initialization: The algorithm starts by sampling in upper-level feasible space with a

population of NP size for the optimistic and pessimistic sub-population respectively.

Note that the populations are co-evolving independently. The lower-level variables are

then found by the lower-level optimization procedure (the lower-level DE). For each
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individual, lower-level DE responds with an optimistic and a pessimistic solution that

is used to further evaluate the upper level.

Step 2: Upper-level mutation and recombination (crossover): The upper-level individuals of

each population are evolved with DE/rand/1/bin mutation strategy.

Step 3: Upper-level fitness evaluation: For each upper-level individual evolved, their fitness

is then evaluated. For this to happen, the lower-level optimal variables are needed.

Therefore, the lower-level optimization procedure is activated.

Step 4: Lower-level DE: for the fixed upper-level variables, a DE for lower-level is conducted,

including its initialization, evolution, and final lower-level optimistic and pessimistic

solutions.

Step 5: Upper-level termination: After the lower level is conducted, the upper-level fitness

is evaluated and then the termination criteria are checked. If they are satisfied, the

procedure stops and a final solution is given. Otherwise, the upper-level population is

Figure 2: lower-level DE flowchart.
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updated with the best solution found so far and we go to step 2 again. The best solution

found for the pessimistic popupper levelation is further refined by local search (Interior

Point) using the fmincon of Matlab.

For the lower-level DE (Input: x vector from upper level):

Step 1: Initialization: The algorithm starts by sampling in a lower-level feasible space with

a population of NP size. The lower-level variables are then found by the lower-level

optimization procedure (the lower-level DE).

Step 2: Lower-level mutation and recombination (crossover): The optimistic lower-level indi-

viduals are evolved with DE/rand/1/bin, while the pessimistic population with DE/best/1/bin.

Step 3: Lower-level fitness evaluation: For each lower-level individual evolved, their fitness is

then evaluated in terms of both lower- and upper-level fitness function.

Step 4: Lower-level termination: After the lower-level is conducted, the lower-level fitness is

evaluated and then the termination criteria are checked. If they are satisfied, the pro-

cedure stops, and two final solutions are given. The minimum and maximum solutions

are labeled as optimistic or pessimistic respectively and passed to the upper-level. Oth-

erwise, the lower-level population is updated with the best solution found so far and we

go to step 2 again. For the optimistic population, the best solution found so far is the

one that is minimum for the lower-level function. For the pessimistic population, the

best solution found so far is the one that is minimum for the lower-level function and

maximum for the upper-level function.

The termination criteria are the maximum number of generations for both levels. The control

parameter values used are shown in Table 1. The population size refers to each sub-population

for both upper- and lower-level DE, while number of generations is for the whole procedure.

The parameter values were selected empirically, and no parameter tuning was conducted.

Table 1: Selected control parameters that are used in all of the reported results.

upper-level lower-level

Population size 10 30

Number of Generations 5 10

Crossover 0.9 0.9

Mutation uniformly(0.2,0.8) uniformly(0.2,0.8)

4 EXPERIMENTAL RESULTS

In this Section, we provide results for one test-problem, to illustrate the ability of the algo-

rithm to reach the optimistic and the pessimistic solutions of the problem. The test function

used is called mb 1 1 17, has multiple global minima in the lower-level, and is taken from

[11]. The optimistic problem has the following formulation:

min
x,y∈Y (x)

x2 − y

s.t. x ∈ [0, 1], y ∈ [0, 3]

where Y (x) = arg min
z∈[0,3]

[z − 1− x/10]2 − x/2− 1/2]2
(5)
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while pessimistic problem is as follows:

min
x

max
y∈Y (x)

x2 − y

s.t. x ∈ [0, 1]

where Y (x) = arg min
z∈[0,3]

{[z − 1− x/10]2 − x/2− 1/2]2}
(6)

In Table 2 the known global optima for the optimistic and pessimistic approach of the problem

are reported. We also mention the pessimistic solution of the optimistic approach, which is

different than the global pessimistic solution.

Table 2: Known optima for the test function mb 1 1 17.

Solutions x y F

Optimistic 0.2106 1.799 -1.755

Optimistic-Pessimistic 0.2106 0.243 -0.1987

Pessimistic 0 0.2929 -0.2929

The test function has been independently run 30 times on an Intel(R) Core(TM) i7-7500

CPU @ 2.70GHz, 16 GB of RAM, and the Windows 10 operating system. The algorithm is

implemented in Matlab R2018b without any parallelization. In Table 3, the optimal values for

the optimistic and pessimistic solutions of the 30 runs of the P-BLDEA are reported. Also,

we report the min, median, and max of each solution and the runtime of the run in seconds.

We can see, that the solutions found for the optimistic approach, in general, reach the known

optimal solution with an accuracy of 0.0002 and for the pessimistic with 0.02. The runtime

is approximately 40 seconds per run. This relatively high number is justified if we take into

account that we are solving two problems at the same time (the optimistic and the pessimistic)

and given that the results are without any parallelization. Moreover, no parameter tuning or

adjustment of the population size is done for this experiment, while any tuning might lead to a

dramatic decrease in the runtime. In Figure 3 the upper- and lower-level 3D mesh and contour

plots are presented. Green dots are the known optimistic and pessimistic optima, while the red

stars show the median values of the optima found from P-BLDE. We can see that the algorithm

approximates the known solutions, managing to overcome the local optima of the lower-level

problem.

5 CONCLUSIONS AND FUTURE WORK

In this paper we proposed a nested EA to solve the pessimistic BOP. Firstly, we introduced

the topic and the motivation behind our research. Then, we gave the definitions of both the

optimistic and the pessimistic bilevel optimization problem. Next, the proposed method was

explained. The algorithm has a multi-population DE in each level, where an optimistic and pes-

simistic population co-evolve. The accuracy of the pessimistic lower-level solution is boosted

by a local search for every best solution found. The algorithm gives two final best solutions,

one for the optimistic and one for the pessimistic approach. The algorithm is tested in bench-

mark test-functions with known global optima, where it was shown to approximate well both

the optimistic and pessimistic known global optima.

Tuning of the parameters of the algorithm’s values, such as the population size and mutation

strategy to decrease the number of function evaluations and make the convergence faster is what
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Table 3: Numerical results for P-BLDE for the 30 runs for test function mb 1 1 17.

Optimistic Pessimistic Runtime

Run F x y F x y (secs)

1 -1.7548 0.25883 1.8218 -0.23591 0.00064378 0.23591 41.5709

2 -1.7548 0.18484 1.7889 -0.28388 0.00064378 0.28388 40.7871

3 -1.7546 0.22197 1.8039 -0.28627 0.00064378 0.28627 39.6872

4 -1.7492 0.28308 1.8293 -0.27532 0.00054351 0.27532 38.7187

5 -1.7531 0.17097 1.7823 -0.23037 0.00064756 0.23037 39.1808

6 -1.7544 0.18277 1.7878 -0.29213 0.00064378 0.29213 38.2499

7 -1.7554 0.18815 1.7908 -0.2928 0.00064378 0.2928 42.3118

8 -1.7546 0.19378 1.7921 -0.29264 0.00064378 0.29264 37.9264

9 -1.7547 0.22099 1.8035 -0.25513 0.0006468 0.25513 42.5849

10 - 1.7526 0.1622 1.7789 -0.28134 0.00053724 0.28134 41.1649

11 -1.7553 0.1681 1.7835 -0.27213 0.00064378 0.27213 41.6821

12 -1.7546 0.18886 1.7903 -0.26977 0.00055272 0.26977 40.2938

13 -1.7538 0.2367 1.8098 -0.27128 0.00054427 0.27128 37.604

14 -1.7548 0.22897 1.8073 -0.29355 0.00064378 0.29355 37.5585

15 -1.7548 0.21446 1.8008 -0.2276 0.00054055 0.2276 37.7102

16 -1.7552 0.2127 1.8004 -0.27017 0.00053614 0.27017 37.4811

17 -1.755 0.22051 1.8037 -0.29301 0.00064378 0.29301 38.0905

18 -1.7561 0.19796 1.7952 -0.28992 0.00054281 0.28992 40.0531

19 -1.755 0.1998 1.7949 -0.1681 0.00053696 0.1681 48.6323

20 -1.7556 0.23253 1.8097 -0.28668 0.00053577 0.28668 46.1897

21 -1.7543 0.22525 1.805 -0.27192 0.00064378 0.27192 43.55

22 -1.7544 0.18446 1.7884 -0.20746 0.00064347 0.20746 49.4864

23 -1.7545 0.19986 1.7944 -0.28558 0.00064378 0.28558 51.1232

24 -1.7545 0.19628 1.7931 -0.29185 0.00064378 0.29185 51.7637

25 -1.7552 0.23102 1.8085 -0.28905 0.00064378 0.28905 57.5057

26 -1.7583 0.19052 1.7946 -0.20317 0.00064378 0.20317 62.2715

27 -1.7542 0.22883 1.8066 -0.23595 0.00053797 0.23595 51.1604

28 -1.7561 0.20439 1.7979 -0.2693 0.00054018 0.2693 49.5794

29 -1.7548 0.20328 1.7962 -0.26064 0.00054826 0.26064 50.1431

30 -1.7552 0.1851 1.7894 -0.29031 0.00053981 0.29031 53.1746

Min -1.7492 0.1622 1.7789 -0.29355 0.00053577 0.1681 37.481

Median -1.7548 0.20157 1.7957 -0.27372 0.00064378 0.27372 41.626

Max -1.7583 0.28308 1.8293 -0.1681 0.00064756 0.29355 62.272

we are working on at the moment. The immediate next step of this research is to take advantage

of the high parallelization of EAs, which will dramatically decrease the computational cost and

reach higher accuracy. Also, methods known to work well for reducing the computational cost

in the optimistic approach state-of-the-art methods, such as the use of surrogates and several

mappings between the upper- and the lower-level solutions, are under investigation. Moreover,

the strategy can work independently of the EA used, meaning that other evolutionary algorithms

more suitable for multimodal problems in the lower-level can be tested, and/or known BLEAs

from the literature can be implemented to find the optimistic solution.
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Figure 3: Upper- and lower-level 3D mesh and contour plots. Green dots are the known opti-

mistic and pessimistic optima, while with red stars the median values of the optima found from

P-BLDE.
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THE HYBRID GLOBAL OPTIMIZATION ALGORITHM ON THE 
BASIS OF A FIREWORKS ALGORITHM 

P. Paździor , M. Szczepanik

Abstract 

The article shows the composition of the developed hybrid optimization algorithm, as well as 
the method and results of testing operation. The new algorithm was inspired by the Fireworks 
Algorithm and the general principle of operation of Evolutionary Algorithms. The goal of de-
veloping a new computational solution was to minimize the number of necessary calls to the 
objective function to reach the global minimum with the desired accuracy. The corresponding
cases compared the results obtained for various test functions of two or more variables. 
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Figure 12: Gaussian Regression of LXN1 and LXN2 after one month of data
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Figure 12: Gaussian Regression of LXN1 and LXN2 after three months of data
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Figure 12: Gaussian Regression of LXIIN1 and LXIIN2 after one month of data

Figure 12: Gaussian Regression of LXIIN1 and LXIIN2 after two months of data
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Figure 12: Gaussian Regression of LXIIN1 and LXIIN2 after three months of data

Figure 12: Gaussian Regression of LXIIIN1 and LXIIIN2 after one month of data
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Figure 12: Gaussian Regression of LXIIIN1 and LXIIIN2 after three months of data
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SOFTWARE PACKAGE FOR THE NUMERICAL SOLUTION OF 
NONLOCAL OPTIMIZATION PROBLEMS 

Pavel S. Sorokovikov , and Alexander Yu. Gornov

Abstract 

The paper discusses the developed first version of the MEOPT (“Multi-Extremal 
OPTimization”) software package designed to solve multiextremal problems of parametric 
identification of nonlinear models. The project includes the following components: software 
framework that provides a uniform approach to the implementation of algorithms and 
includes basic  functionality; libraries  of  optimization  algorithms; collection  of  test  
problems  with  known  solutions; tool and service  modules; metacomponents. The 
implemented libraries of optimization algorithms include multidimensional nonconvex 
optimization methods and algorithms for solving auxiliary problems of global univariate 
search. The library of test problems includes both mathematical programming problems and 
tasks of optimization of dynamic systems. The software package was developed using the C 
language and the GCC compiler; it operates under Linux, Windows, and Mac OS operating 
systems. To date, prototypes of the main modules of the package have been completed. The 
technical testing of the first version of the software was carried out. 
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TESTS OF SCRATCH RESISTANCE OF POLYMER 
MATERIAL SURFACES 

Janusz W. Sikora and Daniel Pieniak

Abstract 

The paper presents the results of comparative tests of resistance to scratching of two polymer
samples made via the extrusion method. The first sample was a homogenous low-density poly-
ethylene Lupolen 2426 H, while the second sample was a two-layer polymer of the same thick-
ness with an outer layer of polypropylene Marlex HGX-030SP and an inner layer of Lupolen
2426 H. The Micro Scratch Tester and the Dektak 150 profilometer were used to perform the 
appropriate measurements. The following values were recorded: coefficient of friction, force 
of friction, depth of indenter penetration and residual depth after scratching. Surface profilo-
grams and boxwhisker diagrams of hardness, width of the gap and area of the crack cross-
section were made. The results of the research indicate the possibility of applying polypropyl-
ene to a layer protecting low-density polyethylene against mechanical damage, especially
against scratches.
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